Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Huan Jing Ke Xue ; 43(10): 4765-4778, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224162

ABSTRACT

Due to reclaimed water, irrigation can cause human health and environmental risks. Soil amendments are applied to reveal the abundance of pathogens and antibiotic resistance genes in rhizosphere soil irrigated by reclaimed water and to better understand the effects of environmental factors on the rhizosphere soil bacterial composition, which has guiding significance for the reasonable use of soil amendments. In this study, the effects of biochar, bioorganic fertilizer, humic acid, loosening soil essence, and corn vinasse on bacterial community diversity and certain gene abundances in rhizosphere soil under drip irrigation with reclaimed water were studied using high-throughput assays and quantitative PCR. The results showed that biochar significantly increased pH, organic matter, and total nitrogen contents in the rhizosphere soil. The corn vinasse significantly decreased soil pH and increased the contents of total nitrogen and total phosphorus but significantly increased the soil EC value (P<0.05). The effects of the five soil amendments on the α-diversity of rhizosphere bacteria were not significantly different. The bacterial community structure and diversity of rhizosphere bacteria were similar at different taxonomic levels, but their relative abundance was different. α-Proteobacteria, γ-Proteobacteria, Bacteroidia, Actinobacteria, Acidimicrobiia, and Anaerolineae were the dominant bacteria in all treatments. The dominant genera consisted of Pseudomonas, Sphingobium, Sphingomonas, Cellvibrio, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Flavobacterium, and Algoriphagus (relative abundance>1%). Correlation analysis of environmental factors showed that the composition of the rhizosphere bacterial community was strongly correlated with pH, EC, total nitrogen, and total phosphorus content. The abundances of pathogenic bacteria and antibiotic resistance genes were 103-107 copies·g-1 and 104-108 copies·g-1, respectively. There were significant differences in the detection levels of pathogens and antibiotic resistance genes. Bioorganic fertilizer, loosening soil essence, and corn vinasse significantly increased the abundances of some antibiotic resistance genes, whereas humic acid and corn vinasse significantly decreased the abundances of Pseudomonas syringae, Ralstonia solanacearum, and total coliforms (P<0.05). A significant correlation was found between pathogens (Arcobacter, Bacillus cereus, Pantoea agglomerans, and Fecal bacteroidetes) and antibiotic resistance genes (tetA, tetB, tetO, tetQ, sul1, ermB, and ermC). In conclusion, while monitoring pathogens and antibiotic resistance genes in the agricultural environment under reclaimed water irrigation, attention should be paid to the rational application of soil amendments to avoid exacerbating the spread of biological contamination.


Subject(s)
Rhizosphere , Soil , Anti-Bacterial Agents/analysis , Bacteria , Charcoal , Drug Resistance, Microbial/genetics , Fertilizers/analysis , Humans , Humic Substances/analysis , Nitrogen/analysis , Phosphorus/analysis , Soil/chemistry , Soil Microbiology , Water/analysis
2.
Environ Pollut ; 240: 475-484, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29754097

ABSTRACT

The spread of antibiotic resistance genes (ARGs) has become a cause for serious concern because of its potential risk to public health. The use of unconventional water resources (e.g., reclaimed water or piggery wastewater) in agriculture to relieve groundwater shortages may result in an accumulation of ARGs in soil. Biochar addition has been proven to be a beneficial method to alleviate the pollution of ARGs in manure-amended soil. However, the role of biochar on ARGs in soil-plant systems repeatedly irrigated with unconventional water resources is unknown. Under reclaimed water or piggery wastewater irrigation, rhizobox experiments using maize plants in soil amended with biochar were conducted to investigate the variation of typical ARGs (tet and sul genes) in soil-plant systems during a 60-day cultivation, and ARGs was characterized by high-throughput qPCR with a 48 (assays) × 108 (samples) array. Only piggery wastewater irrigation significantly increased the abundance of ARGs in rhizosphere and bulk soils and root endophytes. Following 30-day cultivation, the abundance of ARGs in soil was significantly lower due to biochar addition. However, by day 60, the abundance of ARGs in soil supplemented with biochar was significantly higher than in the control soils. Antibiotics, bio-available heavy metals, nutrients, bacterial community, and mobile gene elements (MGEs) were detected and analyzed to find factors shaping ARGs dynamics. The behavior of ARGs were associated with antibiotics but not with bio-available heavy metals. The correlation between ARGs and available phosphorus was stronger than that of ARGs with total phosphorus. MGEs had good relationship with ARGs, and MGEs shifts contributed most to ARGs variation in soil and root samples. In summary, this study provides insights into potential options for biochar use in agricultural activities.


Subject(s)
Bacteria/drug effects , Bacteria/genetics , Charcoal/metabolism , Drug Resistance, Microbial/genetics , Interspersed Repetitive Sequences/genetics , Wastewater/microbiology , Water Resources/supply & distribution , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Manure/microbiology , Phosphorus/analysis , Rhizosphere , Soil , Soil Microbiology , Zea mays/growth & development
3.
Ying Yong Sheng Tai Xue Bao ; 21(1): 79-83, 2010 Jan.
Article in Chinese | MEDLINE | ID: mdl-20387427

ABSTRACT

Field experiment was conducted to investigate the effects of alternate partial root-zone subsurface drip irrigation (APRSDI) on the physiological responses, yield, and water use efficiency of potato. Compared with conventional drip irrigation (CDI), APRSDI had less negative effects on the potato leaf photosynthesis rate (P(n)), but decreased the transpiration rate and stomatal conductance significantly. The slightly higher P(n) under CDI was at the expense of consuming more water. No significant difference was observed in the potato yield under APRSDI and CDI, but APRSDI saved the irrigation amount by 25.8% and increased the irrigation water use efficiency and total water use efficiency by 27.5% and 15.3%, respectively, suggesting that APRSDI would be a feasible water-saving irrigation technique for the planting of potato.


Subject(s)
Agricultural Irrigation/methods , Biomass , Solanum tuberosum/growth & development , Water/metabolism , Plant Roots/metabolism , Solanum tuberosum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL