Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 70(26): 7981-7992, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35734958

ABSTRACT

The liver as the central organ is responsible for lipogenesis, gluconeogenesis and one-carbon metabolism. Methyl donors (e.g., betaine) modulate metabolic homeostasis and gene regulation through one-carbon metabolism. MiR-143 regulates DNA methylation by targeting DNMT3A, thereby suggesting that this miRNA participates in one-carbon metabolic pathways. However, the effect and mechanism that regulate glucose and lipid metabolism via the methyl group metabolism pathway remain elusive. In this study, we found that a betaine supplement and miR-143 KO significantly promoted lipolysis and glucose utilization and repressed lipogenesis and gluconeogenesis through enhancing energy consumption and thermogenesis, repressing GPNMB and targeting MAPK11, respectively. We further explored the relationship between miR-143 and a methyl donor (betaine) and the miR-143-mediated responses to the betaine supplement regulating the mechanism of the glucose and lipid metabolism. The results showed that betaine significantly down-regulated the expression of miR-143 that subsequently increased SAM levels in the liver by targeting MAT1a. In brief, the regulations of glucose and lipid metabolism are related to the miR-143-regulation of one-carbon units, and the relationship between betaine and miR-143 in the methionine cycle is a typical yin-yang type of regulation. Thus, betaine and miR-143 function together as key regulators and biomarkers for preventing and diagnosing metabolic diseases such as fatty liver disease, obesity, and diabetes.


Subject(s)
Gluconeogenesis , MicroRNAs , Betaine/metabolism , Betaine/pharmacology , Carbon/metabolism , Gluconeogenesis/genetics , Glucose/metabolism , Lipid Metabolism/genetics , Lipogenesis , Liver/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
J Nutr ; 151(4): 1038-1046, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33693729

ABSTRACT

BACKGROUND: Previous studies demonstrated that dietary l-arginine (Arg) alters the equilibrium between reactive oxygen species (ROS) generation and biological defenses to resist oxidant-induced toxicity. Whether supplying Arg can protect ovine intestinal epithelial cells (OIECs) from hydrogen peroxide (H2O2)-induced oxidative damage is unclear. OBJECTIVES: The current study aimed to examine the effect of Arg on mitophagy, mitochondrial dysfunction, and apoptosis induced by H2O2 in OIECs. METHODS: The OIECs were incubated in Arg-free DMEM supplemented with 100 µM Arg (CON) or 350 µM Arg (ARG) alone or with 150 µM H2O2 (CON + H2O2, ARG + H2O2) for 24 h. Cellular apoptosis, mitochondrial function, autophagy, and the related categories of genes and proteins were determined. All data were analyzed by ANOVA using the general linear model procedures of SAS (SAS Institute) for a 2 × 2 factorial design. RESULTS: Relative to the CON and ARG groups, H2O2 administration resulted in 44.9% and 26.5% lower (P < 0.05) cell viability but 34.7% and 61.8% greater (P < 0.05) ROS concentration in OIECs, respectively. Compared with the CON and CON + H2O2 groups, Arg supplementation led to 40.7% and 28.8% lower (P < 0.05) ROS concentration but 14.9%-49.0% and 29.3%-64.1% greater (P < 0.05) mitochondrial membrane potential, relative mitochondrial DNA content, and complex (I-IV) activity in OIECs, respectively. Compared with the CON and CON + H2O2 groups, Arg supplementation led to 33.9%-53.1% and 22.4%-49.1% lower (P < 0.05) mRNA abundance of proapoptotic genes, respectively. Relative to the CON and CON + H2O2 groups, Arg supplementation resulted in 33.0%-59.2% and 14.6%-37.7% lower (P < 0.05) abundance of proapoptotic, mitophagy, and cytoplasmic cytochrome c protein, respectively. CONCLUSIONS: Supply of Arg protects OIECs against H2O2-induced damage partly by improving mitochondrial function and alleviating cellular apoptosis and autophagy.


Subject(s)
Arginine/pharmacology , Intestinal Mucosa/drug effects , Oxidative Stress/drug effects , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , DNA, Mitochondrial/metabolism , Dietary Supplements , Hydrogen Peroxide/toxicity , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Protective Agents/pharmacology , Proteins/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Sheep
3.
Mediators Inflamm ; 2020: 2453537, 2020.
Article in English | MEDLINE | ID: mdl-32322162

ABSTRACT

L-arginine (Arg) is a semiessential amino acid with several physiological functions. N-Carbamylglutamate (NCG) can promote the synthesis of endogenous Arg in mammals. However, the roles of Arg or NCG on hepatic inflammation and apoptosis in suckling lambs suffering from intrauterine growth restriction (IUGR) are still unclear. The current work is aimed at examining the effects of dietary Arg and NCG on inflammatory and hepatocyte apoptosis in IUGR suckling lambs. On day 7 after birth, 48 newborn Hu lambs were selected from a cohort of 432 twin lambs. Normal-birthweight and IUGR Hu lambs were allocated randomly (n = 12/group) to control (CON), IUGR, IUGR+1% Arg, or IUGR+0.1% NCG groups. Lambs were fed for 21 days from 7 to 28 days old. Compared with CON lambs, relative protein 53 (P53), apoptosis antigen 1 (Fas), Bcl-2-associated X protein (Bax), caspase-3, cytochrome C, tumor necrosis factor alpha (TNF-α), nuclear factor kappa-B (NF-κB) p65, and NF-κB pp65 protein levels were higher (P < 0.05) in liver from IUGR lambs, whereas those in liver from IUGR lambs under Arg or NCG treatment were lower than those in IUGR lambs. These findings indicated that supplementing Arg or NCG reduced the contents of proinflammatory cytokines at the same time when the apoptosis-related pathway was being suppressed, thus suppressing the IUGR-induced apoptosis of hepatic cells.


Subject(s)
Arginine/therapeutic use , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/metabolism , Glutamates/therapeutic use , Animals , Apoptosis/drug effects , Blotting, Western , Body Weight/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cytochromes c/metabolism , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , In Situ Nick-End Labeling , Liver/drug effects , Liver/metabolism , NF-kappa B/metabolism , Pregnancy , Radioimmunoassay , Reverse Transcriptase Polymerase Chain Reaction , Sheep , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL