Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Ethnopharmacol ; 326: 117827, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38310989

ABSTRACT

BACKGROUND: In many different plants, including Dorstenia and Psoralea corylifolia L., Isobavachalcone (IBC) is a naturally occurring flavonoid chemical having a range of biological actions, including anti-inflammatory, immunomodulatory, and anti-bacterial. The "Theory of Medicinal Properties" of the Tang Dynasty states that Psoralea corylifolia L. has the ability to alleviate discomfort in the knees and waist. One of the most widespread chronic illnesses, osteoarthritis (OA), is characterized by stiffness and discomfort in the joints. However, there hasn't been much research done on the effectiveness and underlying processes of IBC in the treatment of osteoarthritis. AIM OF THE STUDY: To investigate the potential efficacy and mechanism of IBC in treating osteoarthritis, we adopted an integrated strategy of network pharmacology, molecular docking and experiment assessment. MATERIALS AND METHODS: The purpose of this research was to determine the impact of IBC on OA and the underlying mechanisms. IBC and OA possible targets and processes were predicted using network pharmacology, including the relationship between IBC and OA intersection targets, Cytoscape protein-protein interaction (PPI) to obtain key potential targets, and GO and KEGG pathway enrichment analysis to reveal the probable mechanism of IBC on OA. Following that, in vitro tests were carried out to confirm the expected underlying processes. Finally, in vivo tests clarified IBC's therapeutic efficacy on OA. RESULTS: We anticipated and validated that the impact of IBC on osteoarthritis is mostly controlled by the PI3K-AKT-NF-κB signaling pathway by combining the findings of network pharmacology analysis, molecular docking and Experiment Validation. CONCLUSIONS: This study reveals the IBC has potential to delay OA development.


Subject(s)
Chalcones , Drugs, Chinese Herbal , Fabaceae , Osteoarthritis , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Osteoarthritis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
J Cosmet Dermatol ; 22(11): 3152-3158, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37231973

ABSTRACT

OBJECTIVE: This study aims to compare the plasma metabolic profiles of patients with herpes labialis with healthy controls and identify the biomarkers of herpes labialis. SUBJECTS AND METHODS: We collected 18 patients with herpes labialis and 20 healthy individuals. Plasma samples from both groups were analyzed using gas chromatography-mass spectrometry (GC-MS). RESULTS: According to the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), we found that metabolic profiles had changed in patients with herpes labialis compared to the controls. By further selecting the different metabolites according to the variable importance in the projection (VIP) and p valve of t-tests, we found that acetic acid, pyroglutamic acid, alanine, ethanedioic acid, cyclohexaneacetic acid, pyruvic acid, d-mannose, phosphoric acid, l-amphetamine, and citric acid were decreased in patients with herpes labialis, while sedoheptulose and ethylamine were increased. Pathway analysis showed that herpes labialis may affect the amino acid and energy metabolism. CONCLUSIONS: Our findings may contribute to elucidating the metabolic basis of herpes labialis and provide a new perspective for further research on the "Shang-Huo" state in traditional Chinese medicine (TCM).

3.
J Control Release ; 359: 12-25, 2023 07.
Article in English | MEDLINE | ID: mdl-37244298

ABSTRACT

Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system and has a poor prognosis. GBM cells are highly sensitive to ferroptosis and heat, suggesting thermotherapy-ferroptosis as a new strategy for GBM treatment. With its biocompatibility and photothermal conversion efficiency, graphdiyne (GDY) has become a high-profile nanomaterial. Here, the ferroptosis inducer FIN56 was employed to construct GDY-FIN56-RAP (GFR) polymer self-assembled nanoplatforms against GBM. GDY could effectively load FIN56 and FIN56 released from GFR in a pH-dependent manner. The GFR nanoplatforms possessed the advantages of penetrating the BBB and acidic environment-induced in situ FIN56 release. Moreover, GFR nanoplatforms induced GBM cell ferroptosis by inhibiting GPX4 expression, and 808 nm irradiation reinforced GFR-mediated ferroptosis by elevating the temperature and promoting FIN56 release from GFR. In addition, the GFR nanoplatforms were inclined to locate in tumor tissue, inhibit GBM growth, and prolong lifespan by inducing GPX4-mediated ferroptosis in an orthotopic xenograft mouse model of GBM; meanwhile, 808 nm irradiation further improved these GFR-mediated effects. Hence, GFR may be a potential nanomedicine for cancer therapy, and GFR combined with photothermal therapy may be a promising strategy against GBM.


Subject(s)
Ferroptosis , Glioblastoma , Graphite , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/pathology , Photothermal Therapy , Cell Line, Tumor
4.
Front Psychol ; 13: 935053, 2022.
Article in English | MEDLINE | ID: mdl-36312172

ABSTRACT

Objectives: Acupuncture therapy has been used for cognitive impairment-related diseases, however, there are still few studies on the overall trend of acupuncture therapy on cognitive impairment based on bibliometric analysis. The purpose of this study was to explore the research trend of the impact of acupuncture on cognitive impairment in the past 15 years, analyze the research trends and hotspots, and provide new ideas and theoretical basis for future research directions. Methods: From the Web of Science Core Collection (WoSCC), the relevant literature on the treatment of cognitive impairment with acupuncture from 2007 to 2022 was retrieved. Then, based on the CiteSpace and VOSviewer software of the Java platform, the cooperation between countries and institutions in this field, the co-citation of journals and documents, and the cooperation between authors and authors, etc. were analyzed. In addition, the co-occurrence and burst analysis of keywords are also carried out, and a visual knowledge map is drawn. Results: As of August 08, 2022, a total of 394 records related to the treatment of cognitive impairment with acupuncture were identified. The analysis results show: The number and rate of annual publications have steadily increased, with some fluctuations from year to year. The countries that contribute the most to this field are China and the USA. Among them, Beijing University of Chinese Medicine and Capital Medical University are tied for first place in terms of the number of published papers. Tao Jing is the most prolific author and the number one cited author. Conclusions: The number of publications on acupuncture for cognitive impairment is expected to increase rapidly in future research, suggesting a bright future for the field. Future research hotspots will focus on pain, injury, protocol, diagnosis, guidelines, etc. It is also necessary to strengthen cross-regional and cross-country cooperation among various academic groups.

5.
Oxid Med Cell Longev ; 2022: 3800004, 2022.
Article in English | MEDLINE | ID: mdl-36092158

ABSTRACT

Background/Aims. Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) primarily hallmarked by neuroinflammation and demyelination. The activation of astrocytes exerts double-edged sword effects, which perform an integral function in demyelination and remyelination. In this research, we examined the therapeutic effects of the Bu Shen Yi Sui capsule (BSYS), a traditional Chinese medicine prescription, in a cuprizone- (CPZ-) triggered demyelination model of MS (CPZ mice). This research intended to evaluate if BSYS might promote remyelination by shifting A1 astrocytes to A2 astrocytes. Methods. The effects of BSYS on astrocyte polarization and the potential mechanisms were explored in vitro and in vivo utilizing real-time quantitative reverse transcription PCR, immunofluorescence, and Western blotting. Histopathology, expression of inflammatory cytokines (IL-10, IL-1ß, and IL-6), growth factors (TGF-ß, BDNF), and motor coordination were assessed to verify the effects of BSYS (3.02 g/kg/d) on CPZ mice. In vitro, A1 astrocytes were induced by TNF-α (30 ng/mL), IL-1α (3 ng/mL), and C1q (400 ng/mL), following which the effect of BSYS-containing serum (concentration of 15%) on the transformation of A1/A2 reactive astrocytes was also evaluated. Results and Conclusions. BSYS treatment improved motor function in CPZ mice as assessed by rotarod tests. Intragastric administration of BSYS considerably lowered the proportion of A1 astrocytes, but the number of A2 astrocytes, MOG+, PLP+, CNPase+, and MBP+ cells was upregulated. Meanwhile, dysregulation of glutathione peroxidase, malondialdehyde, and superoxide dismutase was reversed in CPZ mice after treatment with BSYS. In addition, the lesion area and expression of proinflammatory cytokines were decreased and neuronal protection factors and anti-inflammatory cytokines were increased. In vitro, BSYS-containing serum suppressed the A1 astrocytic markers' expression and elevated the expression levels of A2 markers in primary astrocytes triggered by C1q, TNF-α, and IL-1α. Importantly, the miR-155/SOCS1 signaling pathway was involved in the modulation of the A1/A2 phenotype shift. Overall, this study demonstrated that BSYS has neuroprotective effects in myelin repair by modulating astrocyte polarization via the miR-155/SOCS1 pathway.


Subject(s)
MicroRNAs , Multiple Sclerosis , Animals , Astrocytes/metabolism , Central Nervous System , Complement C1q/metabolism , Complement C1q/pharmacology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Myelin Sheath , Tumor Necrosis Factor-alpha/metabolism
6.
Mediators Inflamm ; 2022: 9241261, 2022.
Article in English | MEDLINE | ID: mdl-35865997

ABSTRACT

Methods: The potential active ingredients and corresponding potential targets of BSYS Capsule were obtained from the TCMSP, BATMAN-TCM, Swiss Target Prediction platform, and literature research. Disease targets of CNSD were explored through the GeneCards and the DisGeNET databases. The matching targets of BSYS in CNSD were identified from a Venn diagram. The protein-protein interaction (PPI) network was constructed using bioinformatics methods. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the mechanisms of BSYS. Furthermore, the neuroprotective effects of BSYS were evaluated using a cell model of hydrogen peroxide- (H2O2-) induced cell death in OLN-93 cells. Results: A total of 59 potential bioactive components of BSYS Capsule and 227 intersection targets were obtained. Topological analysis showed that AKT had the highest connectivity degrees in the PPI network. Enrichment analysis revealed that the targets of BSYS in the treatment of CNSD were the PI3K-Akt and MAPK signaling pathway, among other pathways. GO analysis results showed that the targets were associated with various biological processes, including apoptosis, reactive oxygen species metabolic process, and response to oxidative stress, among others. The experimental results demonstrated that BSYS drug-containing serum alleviated the H2O2-induced increase in LDH, MDA, and ROS levels and reversed the decrease in SOD and mitochondrial membrane potential induced by H2O2. BSYS treatment also decreased the number of TUNEL (+) cells, downregulated Bcl-2 expression, and upregulated Bax and c-caspase-3 expression by promoting Akt phosphorylation. Conclusion: BSYS Capsule alleviated H2O2-induced OLN-93 cell injury by increasing Akt phosphorylation to suppress oxidative stress and cell apoptosis. Therefore, BSYS can be potentially used for CNSD treatment. However, the results of this study are only derived from in vitro experiments, lacking the validation of in vivo animal models, which is a limitation of our study. We will further verify the underlying mechanisms of BSYS in animal experiments in the future.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Animals , Central Nervous System , Drugs, Chinese Herbal/therapeutic use , Hydrogen Peroxide/pharmacology , Medicine, Chinese Traditional/methods , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
7.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534246

ABSTRACT

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Flavonoids , Plant Roots
8.
Article in English | MEDLINE | ID: mdl-35463062

ABSTRACT

Remyelination is a refractory feature of demyelinating diseases such as multiple sclerosis (MS). Studies have shown that promoting oligodendrocyte precursor cell (OPC) differentiation, which cannot be achieved by currently available therapeutic agents, is the key to enhancing remyelination. Bu Shen Yi Sui capsule (BSYSC) is a traditional Chinese herbal medicine over many years of clinical practice. We have found that BSYSC can effectively treat MS. In this study, the effects of BSYSC in promoting OPCs differentiation and remyelination were assessed using an experimental autoimmune encephalomyelitis (EAE) model in vivo and cultured OPCs in vitro. The results showed that BSYSC reduced clinical function scores and increased neuroprotection. The expression of platelet-derived growth factor receptor α (PDGFR-α) was decreased and the level of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was increased in the brains and spinal cords of mice as well as in OPCs after treatment with BSYSC. We further found that BSYSC elevated the expression of miR-219 or miR-338 in the serum exosomes of mice with EAE, thereby suppressing the expression of Sox6, Lingo1, and Hes5, which negatively regulate OPCs differentiation. Therefore, serum exosomes of BSYSC-treated mice (exos-BSYSC) were extracted and administered to OPCs in which miR-219 or miR-338 expression was knocked down by adenovirus, and the results showed that Sox6, Lingo1, and Hes5 expression was downregulated, MBP expression was upregulated, OPCs differentiation was increased, and the ability of OPCs to wrap around neuronal axons was improved. In conclusion, BSYSC may exert clinically relevant effects by regulating microRNA (miR) levels in exosomes and thus promoting the differentiation and maturation of OPCs.

9.
Small ; 18(6): e2104132, 2022 02.
Article in English | MEDLINE | ID: mdl-34850550

ABSTRACT

Photoacoustic imaging (PA) in the second near infrared (NIR-II) window presents key advantages for deep tissue imaging owing to reduced light scattering and low background signal from biological structures. Here, a thiadiazoloquinoxaline-based semiconducting polymer (SP) with strong absorption in the NIR-II region is reported. After encapsulation of SP in Pluronic F127 (F127) followed by removal of excess surfactant, a dual functional polymer system named surfactant-stripped semiconductor polymeric micelles (SSS-micelles) are generated with water solubility, storage stability, and high photothermal conversion efficiency, permitting tumor theranostics in a mouse model. SSS-micelles have a wideband absorption in the NIR-II window, allowing for the PA imaging at both 1064 and 1300 nm wavelengths. The PA signal of the SSS-micelles can be detected through 6.5 cm of chicken breast tissue in vitro. In mice or rats, SSS-micelles can be visualized in bladder and intestine overlaid 5 cm (signal to noise ratio, SNR ≈ 17 dB) and 5.8 cm (SNR over 10 dB) chicken breast tissue, respectively. This work demonstrates the SSS-micelles as a nanoplatform for deep tissue theranostics.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Animals , Mice , Micelles , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Photoacoustic Techniques/methods , Phototherapy , Polymers/chemistry , Precision Medicine , Rats , Surface-Active Agents/chemistry
10.
Neurochem Int ; 153: 105260, 2022 02.
Article in English | MEDLINE | ID: mdl-34953963

ABSTRACT

Vitamin D deficiency and iron accumulation are prevalent in the brains of Alzheimer's disease (AD) patients, however, whether Vitamin D has a role in the regulations of iron metabolism in the condition of AD remains unknown. Our previous studies revealed that vitamin D deficiency promotes ß-amyloid (Aß) deposition in the APP/PS1 mouse brains, while supplemented with a specific agonist of vitamin D receptor (VDR), paricalcitol (PAL), significantly reduced Aß production via promoting the lysosomal degradation of ß-site APP cleavage enzyme 1 (BACE1). In this study, our data suggested that activation of VDR by PAL significantly reduced the iron accumulation in the cortex and hippocampus of APP/PS1 mice through downregulation of Transferrin receptor (TFR) by reducing iron-regulatory protein 2 (IRP2) expression. Furthermore, activation of VDR effectively reduced the phosphorylations of Tau at Ser396 and Thr181 sites via inhibiting the GSK3ß phosphorylation (Tyr216). Taken together, our data suggest that activation of VDR could inhibit the phosphorylations of Tau possibly by repressing the iron accumulation-induced upregulation of GSK3ß activity in the brains of APP/PS1 mice. Thus, activation of VDR may be an effective strategy for treating AD.


Subject(s)
Alzheimer Disease , Receptors, Calcitriol , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases , Humans , Iron , Mice , Mice, Transgenic , Phosphorylation , Presenilin-1/genetics , Receptors, Calcitriol/metabolism , tau Proteins/metabolism
11.
J Ethnopharmacol ; 284: 114815, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34763039

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jieduquyuziyin prescription (JP) is a traditional Chinese medicine (TCM) formula. According to both TCM theory and more than a decade of clinical practice, JP has been testified to be effective for systemic lupus erythematosus (SLE) treatment as an approved hospital prescription in China. AIM OF THE STUDY: To determine the effect of JP on the treatment of SLE by glucocorticoid (GC) and to further examine the molecular mechanisms. MATERIALS AND METHODS: We conducted in vivo experiments to estimate the effect of JP on hepatic gluconeogenesis in MRL/lpr mice treated with GC. Additionally, isoproterenol (ISO) induced hepatic gluconeogenesis model and GC-treated MRL/lpr mouse hepatocytes were carried out in vitro experiments to verify the effect of JP on gluconeogenesis. RESULTS: The results showed that JP combined with GC could effectively alleviate the lupus symptoms in MRL/lpr mice and improve the pathological changes of the kidney and liver. And the combination of JP reduced the side effects caused by GC, which was related to the inhibition of GC-induced hepatic gluconeogenesis in MRL/lpr mice. Specifically, JP up-regulated the expression of glucocorticoid receptor (GR) α, phosphoinositide-3-kinase (PI3K) and Akt restrained by GC to reduce the production of forkhead box O1 (FoxO1), peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), and the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In vivo, the use of JP either alone or with GC could reduce spleen enlargement, high levels of serum antibodies, aggravated urine protein and renal pathological damage in MRL/lpr mice. Furthermore, the glucose content was reduced in the liver of MRL/lpr mice treated with JP, and the liver damage and steatosis were also alleviated. In vitro, the expressions of PI3K and Akt increased and the expressions of FoxO1, PGC-1α, PEPCK and G6Pase decreased after JP treatment in ISO-treated hepatocytes. Compared with MRL/MP mice, we found that JP could significantly inhibit the expression of gluconeogenesis in the hepatocytes of MRL/lpr mice induced by GC to a greater extent. CONCLUSIONS: The therapeutic effect of JP on GC-induced is likely related to hepatic gluconeogenesis, which provides a new perspective to reveal the positive role of JP in SLE.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Gluconeogenesis/drug effects , Liver/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Female , Glucocorticoids , Humans , Liver/metabolism , Mice , Mice, Inbred Strains , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phosphatidylinositol 3-Kinases/genetics , Phytotherapy , Proto-Oncogene Proteins c-akt/genetics
12.
Article in English | MEDLINE | ID: mdl-34504539

ABSTRACT

BACKGROUND: Renal replacement therapy (RRT), as a cornerstone of supportive treatment, has long been performed in critically ill patients with acute kidney injury (AKI). However, the majority of studies may have neglected the effect of the duration of RRT on the outcome of AKI patients. This paper is aiming to explore the effect of the long duration of RRT on the outcome of critically ill patients with AKI. METHODS: This retrospective study was conducted by using the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database. The primary outcome measure of this study was the mortality at 28 days, 60 days, and 90 days in the long-duration RRT group and the non-long-duration RRT group. The secondary outcomes assessed the difference in clinical outcome in these two groups. Lastly, the effect of the duration of RRT on mortality in AKI patients was determined as the third outcome. RESULTS: We selected 1,020 patients in total who received RRT according to the MIMIC-II database. According to the inclusion and exclusion criteria, we finally selected 506 patients with AKI: 286 AKI patients in the non-long-duration RRT group and 220 in the long-duration RRT group. After 28 days, there was a significant difference in all-cause mortality between the long-duration RRT group and the non-long-duration RRT group (P=0.001). However, the difference disappeared after 60 days and 90 days (P=0.803 and P=0.925, respectively). The length of ICU stay, length of hospital stay, and duration of mechanical ventilation were significantly longer in the long-duration RRT group than those in the non-long-duration RRT group. Considering 28-day mortality, the longer duration of RRT was shown to be a protective factor (HR = 0.995, 95% CI 0.993-0.997, P < 0.0001), while 60-day and 90-day mortality were not correlated with improved protection. CONCLUSIONS: The long duration of RRT can improve the short-term prognosis of AKI patients, but it does not affect the long-term prognosis of these patients. Prognosis is determined by the severity of the illness itself. This suggests that RRT can protect AKI patients through the most critical time; however, the final outcome cannot be altered.

13.
Medicine (Baltimore) ; 100(22): e25681, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34087821

ABSTRACT

BACKGROUND: Digestive tumor is one of the most common cancers, its symptoms and treatment will bring patients with anxiety, depression and other negative emotions, and cause cancer-related fatigue. As a new complementary replacement therapy, music therapy can greatly reduce cancer-related fatigue, anxiety and depression, and achieve good clinical results, but there is a lack of evidence-based medicine. The purpose of this study is to evaluate the effect of music therapy on cancer-related fatigue, anxiety, and depression in patients with digestive tumors by meta-analysis. METHOD: Computer search of Chinese and English databases: Wanfang, VP Information Chinese Journal Service Platform, China National Knowledge Infrastructure, Chinese BioMedicine Literature Database and pubmed, embase, cochrane, web of science. A comprehensive collection of relevant studies on the effects of music therapy on digestive tract cancer-related fatigue, anxiety and depression, the retrieval time is from the date of establishment to March 2021. According to the inclusion and exclusion criteria, the literature is selected, the quality of the literature is evaluated and the data are extracted. The data are analyzed by meta-analysis. RESULT: The purpose of this study is to evaluate the effect of music therapy on digestive tract cancer-related fatigue, anxiety, and depression by European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire, Hamilton Depression Scale, and Hamilton Anxiety Scale . CONCLUSION: This study will provide reliable evidence-based evidence for the clinical application of music therapy in the treatment of digestive tract cancer-related fatigue and anxiety and depression. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/UR4GV.


Subject(s)
Digestive System Neoplasms/psychology , Digestive System Neoplasms/therapy , Mental Health , Music Therapy/methods , Anxiety/etiology , Anxiety/therapy , Depression/etiology , Depression/therapy , Digestive System Neoplasms/complications , Digestive System Neoplasms/pathology , Fatigue/etiology , Fatigue/therapy , Humans , Quality of Life , Randomized Controlled Trials as Topic , Research Design , Meta-Analysis as Topic
14.
Oxid Med Cell Longev ; 2021: 5521503, 2021.
Article in English | MEDLINE | ID: mdl-33815654

ABSTRACT

BACKGROUND: Bu Shen Yi Sui capsule (BSYS) is a traditional Chinese medicine prescription that has shown antineuroinflammatory and neuroprotective effects in treating multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE). Microglia play an important role in neuroinflammation. The M1 phenotype of microglia is involved in the proinflammatory process of the disease, while the M2 phenotype plays an anti-inflammatory role. Promoting the polarization of microglia to M2 in MS/EAE is a promising therapeutic strategy. This study is aimed at exploring the effects of BSYS on microglial polarization in mice with EAE. METHODS: The EAE model was established by the intraperitoneal injection of pertussis toxin and subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG)35-55 in C57BL/6J mice. The mice were treated with BSYS (3.02 g/kg), FTY720 (0.3 mg/kg), or distilled water by intragastric administration. H&E and LFB staining, transmission electron microscopy, qRT-PCR, immunofluorescence, ELISA, fluorescence in situ hybridization, and western blotting were used to detect the histological changes in myelin, microglial M1/M2 polarization markers, and the expression of key genes involved in EAE. Results and Conclusions. BSYS treatment of EAE mice increased the body weight, decreased the clinical score, and reduced demyelination induced by inflammatory infiltration. BSYS also inhibited the mRNA expression of M1 microglial markers while increasing the mRNA level of M2 markers. Additionally, BSYS led to a marked decrease in the ratio of M1 microglia (iNOS+/Iba1+) and an obvious increase in the number of M2 microglia (Arg1+/Iba1+). In the EAE mouse model, miR-124 expression was decreased, and miR-155 expression was increased, while BSYS treatment significantly reversed this effect and modulated the levels of C/EBP α, PU.1, and SOCS1 (target genes of miR-124 and miR-155). Therefore, the neuroprotective effect of BSYS against MS/EAE was related to promoting microglia toward M2 polarization, which may be correlated with changes in miR-124 and miR-155 in vivo.


Subject(s)
Brain/pathology , Demyelinating Diseases/genetics , Drugs, Chinese Herbal/pharmacology , Encephalomyelitis, Autoimmune, Experimental/genetics , Inflammation/pathology , MicroRNAs/metabolism , Microglia/pathology , Animals , Body Weight/drug effects , CCAAT-Enhancer-Binding Proteins/metabolism , Capsules , Cell Differentiation/drug effects , Cell Polarity/drug effects , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/pathology , Exosomes/metabolism , Female , Inflammation/genetics , Mice, Inbred C57BL , MicroRNAs/blood , MicroRNAs/genetics , Oligodendroglia/drug effects , Oligodendroglia/pathology , Phenotype , Proto-Oncogene Proteins/metabolism , Spinal Cord/pathology , Trans-Activators/metabolism , Up-Regulation/genetics
15.
Neurosci Lett ; 752: 135842, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33766734

ABSTRACT

BACKGROUND: Numerous publications have demonstrated that melatonin administration is associated with mortality reduction and improvement in neurological outcomes after traumatic brain injury (TBI). However, there are significant sex differences in several diseases associated with melatonin. We aimed to determine whether androgen was responsible for enhanced susceptibility of melatonin against TBI in females, as well as potential molecular mechanisms. METHODS: Weight-drop was used to establish a rodent model of TBI. Melatonin (10 mg/kg) and testosterone (1 mg/kg) were administered three times every day for three days after TBI using subcutaneous injection, respectively. Seven days after TBI, an open field assay was used to evaluate locomotor and exploratory activities. Neuronal amount, neuronal apoptosis, and expression of phosphorylated extracellularly regulated protein kinases 1/2 (ERK1/2), c-jun N-terminal kinase 1/2 (JNK1/2), and p38 mitogen-activated protein kinase (p38MAPK) in neurons were assessed using immunofluorescence assay seven days after TBI. The expression of caspase-3, Bax, and Bcl-2 in the frontal cortex was detected using western blot. RESULTS: Compared with female rats, melatonin administration exhibited more neuroprotective effects (including improved locomotor and exploratory activities, elevated neuronal amount, and reduced neuronal apoptosis) in male rats exposed to TBI. Moreover, testosterone significantly improved locomotor and exploratory activities, elevated neuronal amount, decreased neuronal apoptosis, downregulated phosphorylation of JNK1/2- and p38MAPK-positive neurons, but upregulated phosphorylation of ERK1/2-positive neurons in the frontal cortex, and reduced the expressions of cleaved caspase-3, Bax, but increased Bcl-2 expressions in female rats exposed to TBI. CONCLUSIONS: Androgen was responsible for the enhanced susceptibility to TBI under melatonin supplementation in females through a mechanism that may be associated with MAPK pathway regulation.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Melatonin/pharmacology , Neuroprotective Agents/pharmacology , Testosterone/pharmacology , Animals , Apoptosis/drug effects , Brain/drug effects , Brain/pathology , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Drug Synergism , Female , Humans , MAP Kinase Signaling System/drug effects , Male , Melatonin/therapeutic use , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/therapeutic use , Phosphorylation/drug effects , Rats , Sex Factors , Testosterone/therapeutic use
16.
Int J Radiat Oncol Biol Phys ; 110(5): 1451-1465, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33662459

ABSTRACT

PURPOSE: The main objective of the present study was to integrate 18F-FDG-PET/CT radiomics with multiblock discriminant analysis for predicting circulating tumor cells (CTCs) in early-stage non-small cell lung cancer (ES-NSCLC) treated with stereotactic body radiation therapy (SBRT). METHODS: Fifty-six patients with stage I NSCLC treated with SBRT underwent 18F-FDG-PET/CT imaging pre-SBRT and post-SBRT (median, 5 months; range, 3-10 months). CTCs were assessed via a telomerase-based assay before and within 3 months after SBRT and dichotomized at 5 and 1.3 CTCs/mL. Pre-SBRT, post-SBRT, and delta PET/CT radiomics features (n = 1548 × 3/1562 × 3) were extracted from gross tumor volume. Seven feature blocks were constructed including clinical parameters (n = 12). Multiblock data integration was performed using block sparse partial least squares-discriminant analysis (sPLS-DA) referred to as Data Integration Analysis for Biomarker Discovery Using Latent Components (DIABLO) for identifying key signatures by maximizing common information between different feature blocks while discriminating CTC levels. Optimal input blocks were identified using a pairwise combination method. DIABLO performance for predicting pre-SBRT and post-SBRT CTCs was evaluated using combined AUC (area under the curve, averaged across different blocks) analysis with 20 × 5-fold cross-validation (CV) and compared with that of concatenation-based sPLS-DA that consisted of combining all features into 1 block. CV prediction scores between 1 class versus the other were compared using the Wilcoxon rank sum test. RESULTS: For predicting pre-SBRT CTCs, DIABLO achieved the best performance with combined pre-SBRT PET radiomics and clinical feature blocks, showing CV AUC of 0.875 (P = .009). For predicting post-SBRT CTCs, DIABLO achieved the best performance with combined post-SBRT CT and delta CT radiomics feature blocks, showing CV AUCs of 0.883 (P = .001). In contrast, all single-block sPLS-DA models could not attain CV AUCs higher than 0.7. CONCLUSIONS: Multiblock integration with discriminant analysis of 18F-FDG-PET/CT radiomics has the potential for predicting pre-SBRT and post-SBRT CTCs. Radiomics and CTC analysis may complement and together help guide the subsequent management of patients with ES-NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/blood , Lung Neoplasms/radiotherapy , Neoplastic Cells, Circulating , Positron Emission Tomography Computed Tomography , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/pathology , Discriminant Analysis , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Prospective Studies , Radiopharmaceuticals , Statistics, Nonparametric , Tumor Burden
17.
Mitochondrial DNA B Resour ; 6(2): 483-484, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33628897

ABSTRACT

Ephedra monosperma is an important medicinal plant of Ephedra (Ephedraceae). The complete chloroplast genome of E. monosperma was assembled from Illumina pair-end sequence reads. The whole chloroplast (cp) genome is 109,548 bp in length and presents a quadripartite structure consisting of two copies of inverted repeat (IR) regions (20,398) separated by a large single copy (LSC) region (60,674 bp) and a small single copy (SSC) region (8078 bp). The cp genome of E. monosperma encodes a total of 118 genes, including 73 protein-coding genes, 37 tRNA genes and 8 rRNA genes. The overall GC content of E. monosperma cp genome is 36.6%. A maximum likelihood (ML) phylogenetic analysis revealed that E. monosperma was close to Ephedra equisetina. The ML tree also showed Ephedraceae appeared more closely related to Gnetaceae than to the other families in Gymnospermae.

18.
ACS Appl Mater Interfaces ; 12(41): 46862-46873, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32960039

ABSTRACT

Device-associated infection is one of the significant challenges in the biomedical industry and clinical management. Controlling the initial attachment of microbes upon the solid surface of biomedical devices is a sound strategy to minimize the formation of biofilms and infection. A synergistic coating strategy combining superhydrophobicity and bactericidal photodynamic therapy is proposed herein to tackle infection issues for biomedical materials. A multifunctional coating is produced upon pure Mg substrate through a simple blending procedure without involvement of any fluoride-containing agents, differing from the common superhydrophobic surface preparations. Superhydrophobic features of the coating are confirmed through water contact angle measurements (152.5 ± 1.9°). In vitro experiments reveal that bacterial-adhesion repellency regarding both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains approaches over 96%, which is evidently ascribed to the proposed synergistic strategy, that is, superhydrophobic nature and microbicidal ability of photodynamic therapy. Electrochemical analysis indicates that the superhydrophobic coating provides pronounced protection against corrosion to underlying Mg with 80% reduction in the corrosion rate in minimum essential medium and retains the original surface features after 168 h exposure to neutral salt spray. The proof-of-concept research holds a great promise for tackling the notorious bacterial infection and poor corrosion resistance of Mg-based biodegradable materials in a simple, efficient, and environmentally benign manner.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Magnesium/pharmacology , Photochemotherapy , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Hydrophobic and Hydrophilic Interactions , Magnesium/chemistry , Microbial Sensitivity Tests , Particle Size , Surface Properties
19.
Front Med (Lausanne) ; 7: 485, 2020.
Article in English | MEDLINE | ID: mdl-32850925

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that has spread worldwide. Methods: This was a retrospective case series involving 218 patients admitted to three tertiary hospitals in the Loudi, Shaoyang, and Xiangtan areas of China from January 21 to June 27, 2020, who were confirmed by RT-PCR to have SARS-CoV-2. The patients' clinical characteristics, laboratory results, treatments, and prognoses based on clinical classification were recorded. Poor outcome was defined as admission to an ICU, the use of mechanical ventilation, or death. Results: The patients were classified into four clinical groups based on disease severity, namely mild (10/218, 5%), moderate (146/218, 67%), severe (24/218, 11%), or critical (14/218, 6%); 24 (11%) asymptomatic cases were also included in the study. The most common symptoms were self-reported cough (162/218, 74%), fever (145/218, 67%), sputum production (99/218, 45%), and fatigue (77/218, 35%). Among the 218 patients, 192 (88%) received lopinavir/ritonavir and interferon-alpha inhalation, and 196 (90%) patients received traditional Chinese medicine. Among the severe and critical patients, 25 (11%) were admitted to an ICU with or without mechanical ventilation, and one patient died. The presence of diabetes [relative risk (RR), 3.0; 95% CI, 1.3-6.8; p = 0.007) or other comorbidities (RR, 5.9; 95% CI, 1.9-17.8; p = 0.002) was independently associated with poor outcome. To date, 20 (9%) patients have retested positive for SARS-CoV-2 RNA after recovering and being discharged. Conclusion: The majority of patients in this case series were clinically classified as having moderate COVID-19. Older patients tended to present with greater levels of clinical severity. The prognosis for patients who were elderly or had diabetes or other chronic comorbidities was relatively poor.

20.
Oxid Med Cell Longev ; 2020: 7895293, 2020.
Article in English | MEDLINE | ID: mdl-32774683

ABSTRACT

Multiple sclerosis (MS) is a common inflammatory demyelinating disorder of the central nervous system. Bu-shen-yi-sui capsule (BSYSC) could significantly reduce the relapse rate, prevent the progression of MS, and enhance remyelination following neurological injury in experimental autoimmune encephalomyelitis (EAE), an established model of MS; however, the mechanism underlying the effect of BSYSC on remyelination has not been well elucidated. This study showed that exosomes carrying biological information are involved in the pathological process of MS and that modified exosomes can promote remyelination by modulating related proteins and microRNAs (miRs). Here, the mechanism by which BSYSC promoted remyelination via exosome-mediated molecular signals was investigated in EAE mice and oligodendrocyte progenitor cells (OPCs) in vitro. The results showed that BSYSC treatment significantly improved the body weight and clinical scores of EAE mice, alleviated inflammatory infiltration and nerve fiber injury, protected the ultrastructural integrity of the myelin sheath, and significantly increased the expression of myelin basic protein (MBP) in EAE mice. In an in vitro OPC study, BSYSC-containing serum, especially 20% BSYSC, promoted the proliferation and migration of OPCs and induced OPCs to differentiate into mature oligodendrocytes that expressed MBP. Furthermore, BSYSC treatment regulated the expression of neuropilin- (NRP-) 1 and GTX, downregulated the expression of miR-16, let-7, miR-15, miR-98, miR-486, and miR-182, and upregulated the level of miR-146 in serum exosomes of EAE mice. In conclusion, these results suggested that BSYSC has a neuroprotective effect and facilitates remyelination and that the mechanism underlying the effect of BSYSC on remyelination probably involves regulation of the NRP-1 and GTX proteins and miRs in serum exosomes, which drive promyelination.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Exosomes/metabolism , Herbal Medicine/methods , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Remyelination/drug effects , Animals , Cell Differentiation , Female , Humans , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL