Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38583734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Subject(s)
Anemia , Cyclophosphamide , Mice, Inbred BALB C , Panax notoginseng , Saponins , Animals , Cyclophosphamide/toxicity , Panax notoginseng/chemistry , Mice , Saponins/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Cell Line, Tumor , Female
2.
J Ethnopharmacol ; 305: 116145, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36623753

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tylophora yunnanensis Schltr (TYS) is widely distributed in Yunnan, Guizhou, and other places in China. It is commonly used by folks to treat hepatitis and other liver-related diseases; however, its mechanism of action is still unclear. AIM OF THE STUDY: This study aimed to determine the effects of TYS on regulating gut microbiota and its metabolites in non-alcoholic steatohepatitis (NASH) rats by inhibiting the activation of NOD-like receptor protein3 (NLRP3). MATERIAL AND METHODS: An HFD-induced rat model was established to investigate if the intragastric administration of TYS could mediate gut microbiota and their metabolites to ultimately improve the symptoms of NASH. The improving effects of TYS on NASH rats were assessed by measuring their body weight, lipid levels, histopathology, and inflammatory factor levels in the rat models. The regulatory effects of TYS on NLRP3 in the NASH rats were analyzed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), which determined the levels of NLRP3-related factors. The changes in the composition of the gut microbiota of NASH rats were analyzed using 16S rRNA gene sequencing technology. Meanwhile, the Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for the non-targeted analysis of metabolites in the cecum contents. RESULTS: The results showed that TYS could improve NASH by decreasing the body weight and levels of lipid, AST, ALT, LPS, FFA, VLDL, IL-1ß, IL-6, TNF-α, TGF-ß, NLRP3, ASC, and Caspase-1 in the NASH rats. The analysis of gut microbiota showed that TYS could improve the diversity and abundance of gut microbiota and alter their composition by decreasing the Firmicutes/Bacteroidetes (F/B) ratio and relative abundances of Lachnospiraceae, Christensenellaceae, Blautia, etc. while increasing those of Muribaculaceae, Rumiaococcus, Ruminococcaceae, etc. The analysis of metabolites in the cecum contents suggested that the arachidonic acid metabolism, bile secretion, serotonergic synapse, Fc epsilon RI signaling pathway, etc. were regulated by TYS. The metabolites enriched in these pathways mainly included chenodeoxycholic acid, prostaglandin D2, TXB2, 9-OxoODE, and 13(S)-HOTrE. CONCLUSIONS: These findings suggested that TYS could alleviate the NASH symptoms by decreasing the body weight, regulating the lipid levels, reducing the inflammatory response, and inhibiting the expression levels of NLRP3, ASC, and Caspase-1 in the NASH rats. The changes in the composition of gut microbiota and their metabolic disorder were closely related to the activation of NLRP3. TYS could significantly inhibit the activation of NLRP3 and regulate the composition of gut microbiota and the disorder of metabolites during NASH modeling.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Rats , Body Weight , Caspase 1/metabolism , China , Chromatography, Liquid , Lipids/pharmacology , Liver/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Ribosomal, 16S/metabolism , Tandem Mass Spectrometry , Tylophora/genetics
3.
Food Funct ; 13(11): 6387-6403, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35616069

ABSTRACT

Increasing studies have shown that walnut green husk (WGH) has obvious effects on reducing lipid, resisting oxidation, and protecting the liver. However, the mechanism by which WGH can prevent high-fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH) remains unclear. This study is aimed at investigating the effects of WGH ethanol extract (WGHE) on NLRP3-related biochemical indicators and the diversity and metabolism of gut microbiota in HFD-induced NASH rats. WGHE was administered to HFD-induced NASH rats for 6 weeks. The results showed that WGHE could decrease the levels of blood and liver TC, TG, LDL-C, AST, and ALT and the levels of liver indices, including IL-1ß, IL-6, TNF-α, TGF-ß, FFA, VLDL, caspase-1, ASC, and NLRP3, while it could increase the levels of HDL-C. The pathological damage to liver tissues was significantly reduced. Moreover, WGHE could reduce the Firmicutes/Bacteroidetes (F/B) ratio and the relative abundances of potentially harmful bacteria, such as Lachnospiraceae and Christensenellaceae, and increase that of potentially beneficial bacteria, such as norank_f__Muribaculaceae. These bacteria were associated with NASH and most of them were significantly associated. A total of 23 gut bacteria and 31 metabolites were significantly altered by HFD, which was reversed by WGHE. The common functional pathways, including lipid metabolism and steroid biosynthesis, were identified through the analysis of KEGG metabolic pathways. In addition, the changes in gut microbiota, such as unclassified_f__Lachnospiraceae, unclassified_g__Blautia, and unclassified_g__Desulfovibrio, were associated with the changes in key intestinal metabolites, such as arachidonoyl amine, xanthine, and 25,26-epoxy-1α-hydroxyvitamin D3. In conclusion, WGHE could mitigate HFD-induced NASH in rats by interfering with the NLRP3-related gut microbiota and their metabolites.


Subject(s)
Gastrointestinal Microbiome , Juglans , Non-alcoholic Fatty Liver Disease , Animals , Bacteria/metabolism , Diet, High-Fat/adverse effects , Ethanol/pharmacology , Liver/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Plant Extracts/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL