Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Commun Signal ; 22(1): 78, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291510

ABSTRACT

BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.


Subject(s)
Renal Insufficiency, Chronic , beta Catenin , Male , Mice , Animals , beta Catenin/metabolism , Succinic Acid/metabolism , Liposomes/metabolism , Clodronic Acid/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Renal Insufficiency, Chronic/metabolism , Fibrosis , Macrophages/metabolism
2.
Sci Rep ; 14(1): 1823, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38245596

ABSTRACT

In this study, Penaeus monodon were gave basic feed supplemented with three levels of Enterococcus faecium. Then, the expression of non-specific immunity-related genes, and the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (AKP), phenol oxidase (PO) were evaluated. Meanwhile, the disease resistance test and intestinal flora determination were conducted. The results showed that the MDA levels of 2% and 5% E. faecium groups were significantly lower than that of the control group (P < 0.05). While the SOD and T-AOC and ACP and AKP of experimental groups were significantly higher (P < 0.05), the PO of experimental groups were significantly lower than that of the control group (P < 0.05). In addition, the expressions of immunity-related genes (tlr22, dorsal, lysozyme, crustin, imd, and relish) in the 2% and 5% E. faecalis groups were significantly greater than those in the control group (P < 0.05). After P. monodon was challenged with Vibrio parahaemolyticus for 7 days, the average cumulative mortality of P. monodon in the 2% and 5% groups were significantly lower than that in the 0% group (P < 0.05). With the increase of feeding time, the number of effective OTUs in each group showed a downward trend. At the 14th d, Proteobacteria, Bacteroidetes and Firmicutes, the dominant flora in the intestinal tract of P. monodon. In summary, supplied with E. faecium could increase the expression of non-specific immunity-related genes, enhance the immune capacity of P. monodon.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Penaeidae , Animals , Enterococcus faecium/metabolism , Antioxidants/metabolism , Monophenol Monooxygenase/metabolism , Superoxide Dismutase/metabolism , Gene Expression , Immunity, Innate
SELECTION OF CITATIONS
SEARCH DETAIL