Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
mBio ; 11(4)2020 07 07.
Article in English | MEDLINE | ID: mdl-32636252

ABSTRACT

The soil microbiome represents one of the most complex microbial communities on the planet, encompassing thousands of taxa and metabolic pathways, rendering holistic analyses computationally intensive and difficult. Here, we developed an alternative approach in which the complex soil microbiome was broken into components ("functional modules"), based on metabolic capacities, for individual characterization. We hypothesized that reproducible, low-complexity communities that represent functional modules could be obtained through targeted enrichments and that, in combination, they would encompass a large extent of the soil microbiome diversity. Enrichments were performed on a starting soil inoculum with defined media based on specific carbon substrates, antibiotics, alternative electron acceptors under anaerobic conditions, or alternative growing conditions reflective of common field stresses. The resultant communities were evaluated through 16S rRNA amplicon sequencing. Less permissive modules (anaerobic conditions, complex polysaccharides, and certain stresses) resulted in more distinct community profiles with higher richness and more variability between replicates, whereas modules with simple substrates were dominated by fewer species and were more reproducible. Collectively, approximately 27% of unique taxa present in the liquid soil extract control were found across functional modules. Taxa that were underrepresented or undetected in the source soil were also enriched across the modules. Metatranscriptomic analyses were carried out on a subset of the modules to investigate differences in functional gene expression. These results demonstrate that by dissecting the soil microbiome into discrete components it is possible to obtain a more comprehensive view of the soil microbiome and its biochemical potential than would be possible using more holistic analyses.IMPORTANCE The taxonomic and functional diversity inherent to the soil microbiome complicate assessments of the metabolic potential carried out by the community members. An alternative approach is to break down the soil microbiome into reduced-complexity subsets based on metabolic capacities (functional modules) prior to sequencing and analysis. Here, we demonstrate that this approach successfully identified specific phylogenetic and biochemical traits of the soil microbiome that otherwise remained hidden from a more top-down analysis.


Subject(s)
Metabolic Networks and Pathways , Metagenome , Microbiota , Soil Microbiology , Bacteria/genetics , Gene Expression Profiling , Genetic Variation , Phylogeny , RNA, Ribosomal, 16S/genetics
2.
Microbiome ; 8(1): 53, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32299497

ABSTRACT

BACKGROUND: Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS: A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION: Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Host Microbial Interactions/genetics , Memory , Animals , Dietary Supplements , Feces/chemistry , Female , Genome-Wide Association Study , Germ-Free Life , Lactates/administration & dosage , Lactobacillus , Male , Metabolomics , Mice/genetics , Mice, Inbred C57BL , Polymorphism, Single Nucleotide , RNA, Ribosomal, 16S , gamma-Aminobutyric Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL