Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Arch Microbiol ; 206(4): 190, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519821

ABSTRACT

Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.


Subject(s)
Dysentery, Bacillary , Metformin , Animals , Mice , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Doxycycline/pharmacology , Metformin/pharmacology , Drug Repositioning , Bacteria , Microbial Sensitivity Tests
2.
Comput Biol Med ; 157: 106785, 2023 05.
Article in English | MEDLINE | ID: mdl-36931201

ABSTRACT

Highly transmissive and rapidly evolving Coronavirus disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), triggered a global pandemic, which is one of the most researched viruses in the academia. Effective drugs to treat people with COVID-19 have yet to be developed to reduce mortality and transmission. Studies on the SARS-CoV-2 virus identified that its main protease (Mpro) might be a potential therapeutic target for drug development, as this enzyme plays a key role in viral replication. In search of potential inhibitors of Mpro, we developed a phytochemical library consisting of 2431 phytochemicals from 104 Korean medicinal plants that exhibited medicinal and antioxidant properties. The library was screened by molecular docking, followed by revalidation by re-screening with a deep learning method. Recurrent Neural Networks (RNN) computing system was used to develop an inhibitory predictive model using SARS coronavirus Mpro dataset. It was deployed to screen the top 12 compounds based on their docked binding affinity that ranged from -8.0 to -8.9 kcal/mol. The top two lead compounds, Catechin gallate and Quercetin 3-O-malonylglucoside, were selected depending on inhibitory potency against Mpro. Interactions with the target protein active sites, including His41, Met49, Cys145, Met165, and Thr190 were also examined. Molecular dynamics simulation was performed to analyze root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RG), solvent accessible surface area (SASA), and number of hydrogen bonds. Results confirmed the inflexible nature of the docked complexes. Absorption, distribution, metabolism, excretion, and toxicity (ADMET), as well as bioactivity prediction confirmed the pharmaceutical activities of the lead compound. Findings of this research might help scientists to optimize compatible drugs for the treatment of COVID-19 patients.


Subject(s)
COVID-19 , Deep Learning , Plants, Medicinal , Humans , Molecular Docking Simulation , SARS-CoV-2 , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
3.
Front Mol Biosci ; 10: 1278701, 2023.
Article in English | MEDLINE | ID: mdl-38601799

ABSTRACT

Adenanthera pavonina is a medicinal plant with numerous potential secondary metabolites showing a significant level of antidiabetic activity. The objective of the current study was to identify potential phytochemicals from the methanolic leaf extract of Adenanthera pavonina as therapeutic agents against diabetes mellitus using GC-MS and in silico methods. The GC-MS analysis of the leaf extract revealed a total of 17 phytochemicals. Molecular docking was performed using these phytochemicals, targeting the mutated insulin receptor tyrosine kinase (5hhw), which inhibits glucose uptake by cells. Diazoprogesterone (-9.2 kcal/mol), 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid (-6.9 kcal/mol), and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] (-6.6 kcal/mol) exhibited better binding with the target protein. The ADMET analysis was performed for the top three compounds with the best docking scores, which showed positive results with no observed toxicity in the AMES test. Furthermore, the molecular dynamics study confirmed the favorable binding of Diazoprogesterone, 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] with the receptor throughout the 100 ns simulation period.

SELECTION OF CITATIONS
SEARCH DETAIL