Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Microb Ecol ; 58(1): 47-55, 2009 Jul.
Article in English | MEDLINE | ID: mdl-18777048

ABSTRACT

Using artificial systems to simulate natural lake environments with cyanobacterial blooms, we investigated plankton community succession by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and morphological method. With this approach, we explored potential ecological effects of a newly developed cyanobacterial blooms removal method using chitosan-modified soils. Results of PCR-DGGE and morphological identification showed that plankton communities in the four test systems were nearly identical at the beginning of the experiment. After applying the newly developed and standard removal methods, there was a shift in community composition, but neither chemical conditions nor plankton succession were significantly affected by the cyanobacteria removal process. The planted Vallisneria natans successfully recovered after cyanobacteria removal, whereas that in the box without removal process did not. Additionally, canonical correspondence analysis indicated that other than for zooplankton abundance, total phosphorus was the most important environmental predictor of planktonic composition. The present study and others suggest that dealing with cyanobacteria removal using chitosan-modified soils can play an important role in controlling cyanobacterial blooms in eutrophicated freshwater systems.


Subject(s)
Chitosan , Cyanobacteria/growth & development , Eutrophication , Plankton/growth & development , Water Microbiology , Cyanobacteria/genetics , DNA Fingerprinting , Ecosystem , Electrophoresis, Polyacrylamide Gel , Phosphorus/analysis , Plankton/genetics , RNA, Bacterial/genetics , Soil
2.
Ying Yong Sheng Tai Xue Bao ; 18(12): 2860-4, 2007 Dec.
Article in Chinese | MEDLINE | ID: mdl-18333467

ABSTRACT

By the method of RAPD fingerprinting, this paper studied the DNA fingerprinting structure of plankton community and its relations to the main environmental physical-chemical factors at five sites in Donghu Lake. From the screened 9 random primers, a total of 210 observable bands with a length of 150-2 000 bp were amplified, 93.3% of which were polymorphic. At the five sites, the average number of amplified bands was 42, with the maximum (53) at site IV and the minimum (35) at site V. The PO4(3-)-P and TP contents were the highest at site I, NH4(+)-N, TN and NO2(-)-N contents were the highest at site V, while the values of all test physical-chemical parameters were the lowest at site IV. No obvious differences in COD, alkalinity, rigidity, and calcium content were observed among the study sites. Similarity clustering analysis showed that the DNA fingerprinting of plankton community based on RAPD marker could cluster the five sites into two groups, i. e., sites I, II and III could be clustered into one group, while sites IV and V could be clustered into another group, which was consistent with the clustering analysis based on the main environmental physical-chemical factors. In conclusion, there was a close relation between the DNA fingerprinting structure of plankton community and the main environmental physical-chemical factors in Donghu Lake.


Subject(s)
DNA Fingerprinting , Ecosystem , Fresh Water/analysis , Plankton/genetics , Water Pollutants/analysis , China , Cluster Analysis , Geography , Nitrogen/analysis , Phosphorus/analysis , Plankton/classification , Plankton/growth & development , Population Dynamics , Random Amplified Polymorphic DNA Technique
3.
J Environ Monit ; 7(7): 670-4, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15986045

ABSTRACT

Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S(eq), G and T90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.


Subject(s)
Environmental Monitoring/methods , Eukaryota/growth & development , Polyurethanes , Animals , Biodiversity , China , Environmental Monitoring/instrumentation , Eukaryota/classification , Fresh Water , Nitrogen/analysis , Oxygen/analysis , Phosphorus/analysis , Population Density , Quaternary Ammonium Compounds/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL