Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069325

ABSTRACT

As a medicinal tree species, ginkgo (Ginkgo biloba L.) and terpene trilactones (TTLs) extracted from its leaves are the main pharmacologic activity constituents and important economic indicators of its value. The accumulation of TTLs is known to be affected by environmental stress, while the regulatory mechanism of environmental response mediated by microRNAs (miRNAs) at the post-transcriptional levels remains unclear. Here, we focused on grafted ginkgo grown in northwestern, southwestern, and eastern-central China and integrally analyzed RNA-seq and small RNA-seq high-throughput sequencing data as well as metabolomics data from leaf samples of ginkgo clones grown in natural environments. The content of bilobalide was highest among detected TTLs, and there was more than a twofold variation in the accumulation of bilobalide between growth conditions. Meanwhile, transcriptome analysis found significant differences in the expression of 19 TTL-related genes among ginkgo leaves from different environments. Small RNA sequencing and analysis showed that 62 of the 521 miRNAs identified were differentially expressed among different samples, especially the expression of miRN50, miR169h/i, and miR169e was susceptible to environmental changes. Further, we found that transcription factors (ERF, MYB, C3H, HD-ZIP, HSF, and NAC) and miRNAs (miR319e/f, miRN2, miRN54, miR157, miR185, and miRN188) could activate or inhibit the expression of TTL-related genes to participate in the regulation of terpene trilactones biosynthesis in ginkgo leaves by weighted gene co-regulatory network analysis. Our findings provide new insights into the understanding of the regulatory mechanism of TTL biosynthesis but also lay the foundation for ginkgo leaves' medicinal value improvement under global change.


Subject(s)
Bilobalides , MicroRNAs , MicroRNAs/genetics , Ginkgolides , Terpenes/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Extracts , Lactones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL