Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Free Radic Biol Med ; 210: 448-461, 2024 01.
Article in English | MEDLINE | ID: mdl-38036067

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.


Subject(s)
Non-alcoholic Fatty Liver Disease , Female , Mice , Humans , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NADP/metabolism , Antioxidants/metabolism , Liver/metabolism , Inflammation/metabolism , Choline/metabolism , Methionine/metabolism , Mice, Inbred C57BL , Disease Models, Animal
2.
Nutrients ; 12(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888081

ABSTRACT

Nowadays, obesity and its associated metabolic disorders, including diabetes, metabolic syndrome, cardiovascular disease, or cancer, continue to be a health epidemic in westernized societies, and there is an increased necessity to explore anti-obesity therapies including pharmaceutical and nutraceutical compounds. Considerable attention has been placed on the identification of bioactive compounds from natural sources to manage the metabolic stress associated with obesity. In a previous work, we have demonstrated that a CO2 supercritical fluid extract from yarrow (Yarrow SFE), downregulates the expression of the lipogenic master regulator SREBF1 and its downstream molecular targets FASN and SCD in a tumoral context. Since obesity and diabetes are strongly considered high-risk factors for cancer development, herein, we aimed to investigate the potential therapeutic role of Yarrow SFE in the metabolic stress induced after a high-fat diet in mice. For this purpose, 32 C57BL/6 mice were distributed in four groups according to their diets: standard diet (SD); SD supplemented with Yarrow SFE (SD + Yarrow); high-fat diet (HFD); and HFD supplemented with Yarrow SFE (HFD + Yarrow). Fasting glycemia, insulin levels, homeostasis model assessment for insulin resistance (HOMA-IR), lipid profile, gene expression, and lipid content of liver and adipose tissues were analyzed after three months of treatment. Results indicate improved fasting glucose levels in plasma, enhanced insulin sensitivity, and diminished hypercholesterolemia in the HFD + Yarrow group compared to the HFD group. Mechanistically, Yarrow SFE protects liver from steatosis after the HFD challenge by augmenting the adipose tissue buffering capacity of the circulating plasma glucose.


Subject(s)
Achillea/chemistry , Diet, High-Fat/adverse effects , Obesity/metabolism , Plant Extracts/pharmacology , Stress, Physiological/drug effects , Animals , Blood Glucose/drug effects , Insulin Resistance , Lipids/blood , Liver/drug effects , Liver/pathology , Mice , Mice, Inbred C57BL
3.
Cell Metab ; 15(6): 838-47, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22682224

ABSTRACT

As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.


Subject(s)
Diet, High-Fat/adverse effects , NAD/metabolism , Niacinamide/analogs & derivatives , Obesity/prevention & control , Acetylation , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Animals , Brain/metabolism , Dietary Supplements , Electron Transport Complex I/metabolism , Energy Metabolism , HEK293 Cells , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , NAD/blood , Niacinamide/administration & dosage , Niacinamide/pharmacology , Obesity/etiology , Organ Specificity , Oxidation-Reduction , Oxygen Consumption , Protein Processing, Post-Translational , Pyridinium Compounds , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL