Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
Cell Death Differ ; 28(1): 123-138, 2021 01.
Article in English | MEDLINE | ID: mdl-32661288

ABSTRACT

SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Selenoproteins/metabolism , Adolescent , Adult , Animals , Calcium/metabolism , Child , Endoplasmic Reticulum/genetics , Energy Metabolism , Female , Homeostasis , Humans , Male , Mice , Mice, Knockout , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Muscular Diseases/genetics , Muscular Diseases/pathology , Oxidation-Reduction , Selenoproteins/genetics , Young Adult
2.
Brain ; 135(Pt 4): 1115-27, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22418739

ABSTRACT

The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defective excitation-contraction coupling, other abnormalities likely play a role in disease pathogenesis. In an effort to discover novel pathogenic mechanisms, we analysed two complementary models of RYR1-related myopathies, the relatively relaxed zebrafish and cultured myotubes from patients with RYR1-related myopathies. Expression array analysis in the zebrafish disclosed significant abnormalities in pathways associated with cellular stress. Subsequent studies focused on oxidative stress in relatively relaxed zebrafish and RYR1-related myopathy myotubes and demonstrated increased oxidant activity, the presence of oxidative stress markers, excessive production of oxidants by mitochondria and diminished survival under oxidant conditions. Exposure to the antioxidant N-acetylcysteine reduced oxidative stress and improved survival in the RYR1-related myopathies human myotubes ex vivo and led to significant restoration of aspects of muscle function in the relatively relaxed zebrafish, thereby confirming its efficacy in vivo. We conclude that oxidative stress is an important pathophysiological mechanism in RYR1-related myopathies and that N-acetylcysteine is a successful treatment modality ex vivo and in a vertebrate disease model. We propose that N-acetylcysteine represents the first potential therapeutic strategy for these debilitating muscle diseases.


Subject(s)
Acetylcysteine/therapeutic use , Antioxidants/therapeutic use , Muscular Diseases/drug therapy , Muscular Diseases/metabolism , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Acetophenones/pharmacology , Animals , Animals, Genetically Modified , Behavior, Animal , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Humans , Indomethacin/pharmacology , Larva , Microarray Analysis , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Muscle Contraction/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/ultrastructure , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation/genetics , Oxidative Stress/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Zebrafish
3.
Ann Neurol ; 68(4): 511-20, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20976770

ABSTRACT

OBJECTIVE: Mutations in the genes encoding the extracellular matrix protein collagen VI (ColVI) cause a spectrum of disorders with variable inheritance including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate phenotypes. We extensively characterized, at the clinical, cellular, and molecular levels, 49 patients with onset in the first 2 years of life to investigate genotype-phenotype correlations. METHODS: Patients were classified into 3 groups: early-severe (18%), moderate-progressive (53%), and mild (29%). ColVI secretion was analyzed in patient-derived skin fibroblasts. Chain-specific transcript levels were quantified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and mutation identification was performed by sequencing of complementary DNA. RESULTS: ColVI secretion was altered in all fibroblast cultures studied. We identified 56 mutations, mostly novel and private. Dominant de novo mutations were detected in 61% of the cases. Importantly, mutations causing premature termination codons (PTCs) or in-frame insertions strikingly destabilized the corresponding transcripts. Homozygous PTC-causing mutations in the triple helix domains led to the most severe phenotypes (ambulation never achieved), whereas dominant de novo in-frame exon skipping and glycine missense mutations were identified in patients of the moderate-progressive group (loss of ambulation). INTERPRETATION: This work emphasizes that the diagnosis of early onset ColVI myopathies is arduous and time-consuming, and demonstrates that quantitative RT-PCR is a helpful tool for the identification of some mutation-bearing genes. Moreover, the clinical classification proposed allowed genotype-phenotype relationships to be explored, and may be useful in the design of future clinical trials.


Subject(s)
Collagen Type VII/genetics , Collagen Type VII/metabolism , Muscular Diseases , Mutation/genetics , Statistics as Topic , Adolescent , Adult , Cells, Cultured , Child , Child, Preschool , Europe , Female , Fibroblasts/metabolism , Genetic Testing/methods , Glycine/genetics , Humans , Male , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL