Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 298: 124745, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31260966

ABSTRACT

The chemical and sensory profiles of wines prepared from Cabernet Sauvignon grapes at different ripening stages vary greatly. Here, the soluble cell wall carbohydrate (SCWC) and phenolic profiles of wines were analyzed in parallel with the sensory evaluation of their mouthfeel and taste characteristics. Both SCWCs and phenolic compounds correlated with wine mouthfeel. When analyses were extended to specific classes of cell wall carbohydrates, it was shown that rhamnogalacturonan I/II, arabinan, arabinogalactan types I and II and xyloglucan from grapes were the key determinants of overall mouthfeel descriptors, particularly viscosity, astringency and roughness, whereas heteromannan from grapes was associated with mouth coating and chalkiness. A perceived sour taste was notably associated with higher homogalacturonan contents. This finding provides insights into the contributions of non-phenolic compounds to wine mouthfeel. The data provide opportunities for the development of simple monosaccharide marker assays to monitor major mouthfeel characteristics in red wines.


Subject(s)
Carbohydrates/analysis , Cell Wall/chemistry , Taste , Vitis/chemistry , Wine/analysis , Astringents/analysis , Galactans/analysis , Humans , Molecular Weight , Mouth , Pectins/analysis , Phenols/analysis
2.
Plant Cell Environ ; 41(9): 2195-2208, 2018 09.
Article in English | MEDLINE | ID: mdl-29532951

ABSTRACT

Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea.


Subject(s)
Cell Wall/chemistry , Cicer/cytology , Cicer/genetics , Flour/analysis , Cell Wall/genetics , Cellulose/analysis , Cooking , Cotyledon/chemistry , Genotype , Monosaccharides/analysis , Pectins/analysis , Polysaccharides/analysis , Polysaccharides/chemistry , Time Factors
3.
Planta ; 225(4): 945-54, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16983536

ABSTRACT

Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) catalyses the reduction of the monodehydroascorbate (MDHA) radical to ascorbate, using NADH or NADPH as an electron donor, and is believed to be involved in maintaining the reactive oxygen scavenging capability of plant cells. This key enzyme in the ascorbate-glutathione cycle has been studied here in the moss Physcomitrella patens, which is tolerant to a range of abiotic stresses and is increasingly used as a model plant. In the present study, three cDNAs encoding different MDHAR isoforms of 47 kDa were identified in P. patens, and found to exhibit enzymic characteristics similar to MDHARs in vascular plants despite low-sequence identity and a distant evolutionary relationship between the species. The three cDNAs for the P. patens MDHAR enzymes were expressed in Escherichia coli and the active enzymes were purified and characterized. Each recombinant protein displayed an absorbance spectrum typical of flavoenzymes and contained a single non-covalently bound FAD coenzyme molecule. The Km and kcat values for the heterologously expressed PpMDHAR enzymes ranged from 8 to 18 microM and 120-130 s(-1), respectively, using NADH as the electron donor. The Km values were at least an order of magnitude higher for NADPH. The Km values for the MDHA radical were approximately 0.5-1.0 microM for each of the purified enzymes, and further kinetic analyses indicated that PpMDHARs follow a 'ping-pong' kinetic mechanism. In contrast to previously published data, site-directed mutagenesis indicated that the conserved cysteine residue is not directly involved in the reduction of MDHA.


Subject(s)
Ascorbic Acid/biosynthesis , Bryopsida/enzymology , NADH, NADPH Oxidoreductases/metabolism , Reactive Oxygen Species/metabolism , Amino Acid Sequence , Bryopsida/genetics , Bryopsida/metabolism , Catalysis , Cysteine/metabolism , DNA, Complementary/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flavin-Adenine Dinucleotide/metabolism , Gene Expression , Kinetics , Molecular Sequence Data , NADH, NADPH Oxidoreductases/genetics , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL