Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 7: 12317, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27502960

ABSTRACT

Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.


Subject(s)
Cell Membrane Permeability , Electron Transport Complex I/deficiency , Mitochondrial Diseases/metabolism , Prodrugs/pharmacology , Succinic Acid/pharmacology , Cell Membrane Permeability/drug effects , Cell Respiration/drug effects , Drug Discovery , Drug Evaluation, Preclinical , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Fibroblasts/pathology , Humans , Lactates/metabolism , Leigh Disease/pathology , Metabolomics , Models, Biological , Prodrugs/chemistry , Succinic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL