Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Biotechnol J ; 16(6): 1186-1200, 2018 06.
Article in English | MEDLINE | ID: mdl-29193665

ABSTRACT

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A ß-carotene. In this study, ß-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 µg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-ß-carotene, the most nutritionally efficacious carotenoid. ß-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in ß-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between ß-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between ß-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.


Subject(s)
Biofortification , Carbohydrate Metabolism , Carotenoids/metabolism , Manihot/chemistry , Plant Roots/chemistry , Abscisic Acid/metabolism , Food Storage , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Manihot/genetics , Manihot/metabolism , Plants, Genetically Modified , Solanum tuberosum/chemistry , Starch/biosynthesis , Transferases/genetics
2.
Annu Rev Plant Biol ; 62: 251-72, 2011.
Article in English | MEDLINE | ID: mdl-21526968

ABSTRACT

More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10%-20% of that for iron, zinc, and vitamin A. The BioCassava Plus (BC+) program has employed modern biotechnologies intended to improve the health of Africans through the development and delivery of genetically engineered cassava with increased nutrient (zinc, iron, protein, and vitamin A) levels. Additional traits addressed by BioCassava Plus include increased shelf life, reductions in toxic cyanogenic glycosides to safe levels, and resistance to viral disease. The program also provides incentives for the adoption of biofortified cassava. Proof of concept was achieved for each of the target traits. Results from field trials in Puerto Rico, the first confined field trials in Nigeria to use genetically engineered organisms, and ex ante impact analyses support the efficacy of using transgenic strategies for the biofortification of cassava.


Subject(s)
Food, Fortified , Iron , Manihot/chemistry , Plant Proteins, Dietary , Plants, Genetically Modified , Vitamin A , Zinc , Africa South of the Sahara , Manihot/genetics , Nigeria , Nitriles/metabolism , Nutritive Value , Puerto Rico
SELECTION OF CITATIONS
SEARCH DETAIL