Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Viruses ; 13(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918611

ABSTRACT

Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop's main domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes plus 49 published genomic sequences were analyzed. Only 18 of them were recombinants, 17 of them Peruvian. A phylogeny of the non-recombinant sequences found two major (I, II) and five minor (I-1, I-2, II-1, II-2, II-3) phylogroups, which included 12 statistically supported clusters. Analysis of 488 coat protein (CP) gene sequences, including 128 published previously, gave a completely congruent phylogeny. Among the minor phylogroups, I-2 and II-3 only contained Andean isolates, I-1 and II-2 were of both Andean and other isolates, but all of the three II-1 isolates were European. I-1, I-2, II-1 and II-2 all contained biologically typed isolates. Population genetic and dating analyses indicated that PVX emerged after potato's domestication 9000 years ago and was transported to Europe after the 15th century. Major clusters A-D probably resulted from expansions that occurred soon after the potato late-blight pandemic of the mid-19th century. Genetic comparisons of the PVX populations of different Peruvian Departments found similarities between those linked by local transport of seed potato tubers for summer rain-watered highland crops, and those linked to winter-irrigated crops in nearby coastal Departments. Comparisons also showed that, although the Andean PVX population was diverse and evolving neutrally, its spread to Europe and then elsewhere involved population expansion. PVX forms a basal Potexvirus genus lineage but its immediate progenitor is unknown. Establishing whether PVX's entirely Andean phylogroups I-2 and II-3 and its Andean recombinants threaten potato production elsewhere requires future biological studies.


Subject(s)
Disease Vectors , Potexvirus/genetics , Solanum tuberosum/virology , Animals , Genome, Viral , Genomics , Humans , Open Reading Frames , Phylogeny , Phylogeography , Plant Diseases/virology , Potexvirus/classification , RNA Virus Infections/transmission , RNA, Viral/genetics
2.
Plant Dis ; 103(7): 1746-1756, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31082318

ABSTRACT

In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.


Subject(s)
Genome, Viral , Potyvirus , Solanum , Genome, Viral/genetics , Peru , Phylogeny , Potyvirus/classification , Potyvirus/genetics , Solanum/microbiology , Species Specificity
3.
Plant Dis ; 102(5): 869-885, 2018 May.
Article in English | MEDLINE | ID: mdl-30673374

ABSTRACT

Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSA and PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSO and two PVSA isolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSA and PVSO elicited similar foliage symptoms. Following graft inoculation, all except two PVSO isolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSA and PVSO. Myzus persicae transmitted all nine PVSA isolates but none of the three PVSO isolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSA isolates but less than 21 days for the three PVSO isolates. Dilution end points were 10-3 for two PVSO isolates but 10-4 to 10-6 with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.


Subject(s)
Carlavirus/genetics , Carlavirus/physiology , Phylogeny , Plant Diseases/virology , Solanum tuberosum/virology , Plant Leaves/virology , South America
SELECTION OF CITATIONS
SEARCH DETAIL