Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Metab Eng ; 9(2): 169-76, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17189709

ABSTRACT

Morphine biosynthesis was genetically engineered in an industrial elite line of the opium poppy (Papaver somniferum L.), to modify the production of alkaloids in plants. The cytochrome P-450-dependent monooxygenase (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B3) lies on the pathway to the benzylisoquinoline alkaloid branch point intermediate (S)-reticuline. Overexpression of cyp80b3 cDNA resulted in an up to 450% increase in the amount of total alkaloid in latex. This increase occurred either without changing the ratio of the individual alkaloids, or together with an overall increase in the ratio of morphine. Correspondingly, antisense-cyp80b3 cDNA expressed in opium poppy caused a reduction of total alkaloid in latex up to 84%, suggesting that the observed phenotypes were dependent on the presence of the transgene. This study found compelling evidence, that cyp80b3 is a key regulation step in morphine biosynthesis and provides practical means to genetically engineer valuable secondary metabolites in this important medicinal plant.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genetic Enhancement/methods , Morphine/metabolism , Papaver/physiology , Protein Engineering/methods , Agriculture/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/metabolism , Transfection/methods
2.
J Nat Prod ; 68(5): 666-73, 2005 May.
Article in English | MEDLINE | ID: mdl-15921406

ABSTRACT

In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar "Marianne". In the elite cultivar, 91.2% of the latex alkaloids consist of the three pharmaceutically most valuable alkaloids: morphine, codeine, and thebaine. In the root system, the major alkaloids are sanguinarine/10-hydroxysanguinarine and dihydrosanguinarine/10-hydroxydihydrosanguinarine. In the stems and leaves of C048-6-14-64, the same alkaloids were measured as in the latex. In the stems, a gradient in relative total alkaloid content from the top downward toward the roots was observed. The concentration of morphine was decreasing toward the roots, whereas an increasing gradient from the upper to the lower stem parts was detected for codeine. The relative total alkaloid concentration in leaves remained constant; no gradient was observed. The cultivar "Marianne" displayed a shifted pattern of alkaloid accumulation and reduced levels of total alkaloid. In the condiment cultivar, 80.5% of the alkaloids of the latex consisted of the two phthalideisoquinoline alkaloids narcotoline and noscapine. Only 18.8% of the relative total alkaloid content were morphinan alkaloids. In contrast to the narcotic cultivar, in which the benzo[c]phenanthridines in roots dominated over the morphinan and tetrahydrobenzylisoquinoline alkaloids, the concentration of benzo[c]phenanthridines in "Marianne" was similar to that of morphinan and tetrahydrobenzylisoquinoline alkaloids. These data suggest a differential alkaloid regulation in each cultivar of P. somniferum.


Subject(s)
Alkaloids/analysis , Alkaloids/chemistry , Papaver/chemistry , Plants, Medicinal/chemistry , Australia , Codeine/analysis , Molecular Structure , Morphinans/analysis , Narcotics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL