Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 300(2): 105599, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159853

ABSTRACT

It is known that the recommended dietary allowance of selenium (Se) is dangerously close to its tolerable upper intake level. Se is detoxified and excreted in urine as trimethylselenonium ion (TMSe) when the amount ingested exceeds the nutritional level. Recently, we demonstrated that the production of TMSe requires two methyltransferases: thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). In this study, we investigated the substrate recognition mechanisms of INMT and TPMT in the Se-methylation reaction. Examination of the Se-methyltransferase activities of two paralogs of INMT, namely, nicotinamide N-methyltransferase and phenylethanolamine N-methyltransferase, revealed that only INMT exhibited Se-methyltransferase activity. Consistently, molecular dynamics simulations demonstrated that dimethylselenide was preferentially associated with the active center of INMT. Using the fragment molecular orbital method, we identified hydrophobic residues involved in the binding of dimethylselenide to the active center of INMT. The INMT-L164R mutation resulted in a deficiency in Se- and N-methyltransferase activities. Similarly, TPMT-R152, which occupies the same position as INMT-L164, played a crucial role in the Se-methyltransferase activity of TPMT. Our findings suggest that TPMT recognizes negatively charged substrates, whereas INMT recognizes electrically neutral substrates in the hydrophobic active center embedded within the protein. These observations explain the sequential requirement of the two methyltransferases in producing TMSe.


Subject(s)
Methyltransferases , Selenium , Methyltransferases/genetics , Methyltransferases/metabolism , Selenium/metabolism , Methylation , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Protein Binding , Humans
2.
Biochem Biophys Rep ; 29: 101223, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146136

ABSTRACT

Selenium is a chalcogen element that is essential in animals, but is highly toxic when ingested above the nutritional requirement. Selenite is used as a supplement in patients receiving total parenteral nutrition. However, the therapeutic and toxic doses of selenite are separated by a narrow range. This ambivalent character of selenite implies the presence of cellular mechanisms that precisely control selenite homeostasis. Here, we investigated mechanisms that determine cellular susceptibility to selenite exposure. The resistance to selenite exposure was significantly different among cell lines. We determined the expression levels of TPMT (thiopurine S-methyltransferase) and SLC4A1 (solute carrier family 4 member 1), which encode selenium methyltransferase and selenite transporter, respectively. We also examined the effect of inhibition of Band 3 protein activity, which is encoded by SLC4A1, on the cellular sensitivity to selenite. The data suggest that the expression level of SLC4A1 is the determinant of cellular sensitivity to selenite.

3.
Chem Res Toxicol ; 34(12): 2471-2484, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34841876

ABSTRACT

It is widely recognized that the toxicity of mercury (Hg) is attenuated by the simultaneous administration of selenium (Se) compounds in various organisms. In this study, we revealed the mechanisms underlying the antagonistic effect of sodium selenite (Na2SeO3) on inorganic Hg (Hg2+) toxicity in human hepatoma HepG2 cells. Observations by transmission electron microscopy indicated that HgSe (tiemannite) granules of up to 100 nm in diameter were accumulated in lysosomal-like structures in the cells. The HgSe granules were composed of a number of HgSe nanoparticles, each measuring less than 10 nm in diameter. No accumulation of HgSe nanoparticles in lysosomes was observed in the cells exposed to chemically synthesized HgSe nanoparticles. This suggests that intracellular HgSe nanoparticles were biologically generated from Na2SeO3 and Hg2+ ions transported into the cells and were not derived from HgSe nanoparticles formed in the extracellular fluid. Approximately 85% of biogenic HgSe remained in the cells at 72 h post culturing, indicating that biogenic HgSe was hardly excreted from the cells. Moreover, the cytotoxicity of Hg2+ was ameliorated by the simultaneous exposure to Na2SeO3 even before the formation of insoluble HgSe nanoparticles. Our data confirmed for the first time that HepG2 cells can circumvent the toxicity of Hg2+ through the direct interaction of Hg2+ with a reduced form of Se (selenide) to form HgSe nanoparticles via a Hg-Se soluble complex in the cells. Biogenic HgSe nanoparticles are considered the ultimate metabolite in the Hg detoxification process.


Subject(s)
Mercury/adverse effects , Nanoparticles/adverse effects , Selenium/adverse effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Mercury/metabolism , Nanoparticles/metabolism , Selenium/metabolism , Tumor Cells, Cultured
4.
Chem Res Toxicol ; 33(9): 2467-2474, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32786394

ABSTRACT

Selenium (Se) is an essential trace element in animals; however, the element can become highly toxic in excess amounts beyond the nutritional level. Although Se is mainly excreted into urine as a selenosugar within the nutritional level, excess amounts of Se are transformed as an alternative urinary metabolite, trimethylselenonium ion (TMSe). Se methylation appears to be an important metabolic process for the detoxification of excess Se; however, the biochemical mechanisms underlying the Se methylation have not been elucidated. In this study, we evaluated biochemical characteristics of two human methyltransferases for Se methylation, thiopurine S-methyltransferase (TPMT) and indolethylamine N-methyltransferase (INMT). The first methylation of Se, i.e., a nonmethylated to a monomethylated form, was specifically driven by TPMT, and INMT specifically mediated the third methylation, i.e., dimethylated to trimethylated form. The second methylation, i.e., a monomethylated to dimethylated form, was driven by either TPMT or INMT. Exogenous expression of TPMT, but not INMT, ameliorated the cytotoxicity of inorganic nonmethylated selenium salt, suggesting that only TPMT gave the cellular resistance against selenite exposure. TPMT was ubiquitously expressed in most mouse tissues and preferably expressed in the liver and kidneys, while INMT was specifically expressed in the lung and supplementally expressed in the liver and kidneys. Our results revealed that both TPMT and INMT cooperatively contributed to the TMSe production, enabling urinary excretion of Se and maintenance of homeostasis of this essential yet highly toxic trace element. Thus, TPMT and INMT can be recognized as selenium methyltransferases as a synonym.


Subject(s)
Methyltransferases/metabolism , Selenium Compounds/metabolism , Cells, Cultured , Chromatography, Liquid , HEK293 Cells , Humans , Selenium Compounds/chemistry , Selenium Compounds/urine , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL