Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Biochem Funct ; 33(5): 266-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26059489

ABSTRACT

Consumption of cruciferous vegetables may protect against colorectal cancer. Cruciferous vegetables are rich in a number of bioactive constituents including polyphenols, vitamins and glucosinolates. Before consumption, cruciferous vegetables often undergo some form of processing that reduces their content of bioactive constituents and may determine whether they exert protective effects. The aim of this study was to compare the ability of raw and blanched-frozen broccoli to protect colonocytes against DNA damage, improve antioxidant status and induce xenobiotic metabolizing enzymes (XME). Fifteen Landrace × Large White male pigs were divided into five age-matched and weight-matched sets (79 days, SD 3, and 34·7 kg, SD 3·9, respectively). Each set consisted of siblings to minimize genetic variation. Within each set, pigs received a cereal-based diet, unsupplemented (control) or supplemented with 600 g day(-1) of raw or blanched-frozen broccoli for 12 days. The consumption of raw broccoli caused a significant 27% increase in DNA damage in colonocytes (p = 0·03) relative to the control diet, whereas blanched-frozen broccoli had no significant effect. Both broccoli diets had no significant effect on plasma antioxidant status or hepatic and colonic XME. This study is the first to report that the consumption of raw broccoli can damage DNA in porcine colonocytes.


Subject(s)
Brassica/adverse effects , Colon/cytology , Colon/drug effects , DNA Damage/drug effects , Frozen Foods/adverse effects , Raw Foods/adverse effects , Animals , Brassica/enzymology , Glycoside Hydrolases/metabolism , Male , Swine , Xenobiotics/metabolism
2.
Br J Nutr ; 98(2): 364-72, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17403273

ABSTRACT

Glucosinolate consumption from brassica vegetables has been implicated in reduction of cancer risk. The isothiocyanate breakdown products of glucosinolates appear to be particularly important as chemoprotective agents. Before consumption, brassica vegetables are generally cooked, causing the plant enzyme, myrosinase, to be denatured, influencing the profile of glucosinolate breakdown products produced. Some human intestinal microflora species show myrosinase-like activity (e.g. bifidobacteria). We aimed to increase bifidobacteria by offering a prebiotic (inulin) in a randomised crossover study. Six volunteers consumed inulin (10 g/d) for 21 d followed by a 21 d control period (no inulin). Treatment periods were reversed for the remaining six volunteers. During the last 5 d of each period two cabbage-containing meals were consumed. Total urine output was collected for 24 h following each meal. Cabbage was microwaved for 2 min (lightly cooked) or 5.5 min (fully cooked). Faecal samples were collected at the start and after the inulin and control treatments. Bifidobacteria were enumerated by real-time PCR. Allyl isothiocyanate production was quantified by measuring urinary excretion of allyl mercapturic acid (AMA). Bifidobacteria increased following prebiotic supplementation (P < 0.001) but there was no impact of this increase on AMA excretion. AMA excretion was greater following consumption of lightly cooked cabbage irrespective of prebiotic treatment (P < 0.001). In conclusion, the most effective way to increase isothiocyanate production may be to limit the length of time that brassica vegetables are cooked prior to consumption.


Subject(s)
Bifidobacterium/drug effects , Brassica/chemistry , Colon/microbiology , Cooking/methods , Glucosinolates/metabolism , Inulin/administration & dosage , Acetylcysteine/urine , Adult , Brassica/enzymology , Colony Count, Microbial/methods , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Feces/microbiology , Female , Glucosinolates/analysis , Glucosinolates/urine , Glycoside Hydrolases/metabolism , Humans , Male , Middle Aged , Probiotics/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL