Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Prog Biophys Mol Biol ; 177: 185-201, 2023 01.
Article in English | MEDLINE | ID: mdl-36481271

ABSTRACT

Bioelectricity plays an essential role in the structural and functional organization of biological organisms. In this first article of our three-part series, we summarize the importance of bioelectricity for the basic structural level of biological organization, i.e. from the subcellular level (charges, ion channels, molecules and cell organelles) to cells.


Subject(s)
Electrophysiological Phenomena , Ion Channels , Organelles
2.
Int J Mol Sci ; 21(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235464

ABSTRACT

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Subject(s)
Low-Level Light Therapy , Neuroprotection/radiation effects , Photoreceptor Cells, Vertebrate/radiation effects , Retinal Degeneration/therapy , Animals , Female , Infrared Rays/therapeutic use , Low-Level Light Therapy/methods , Male , Mice, Inbred C57BL , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Up-Regulation/radiation effects , alpha-Crystallins/genetics
3.
Article in English | MEDLINE | ID: mdl-24963323

ABSTRACT

A novel hand-held low-frequency magnetic stimulator (MagCell-SR) was tested for its ability to stimulate microcirculation in fingers of healthy volunteers. Blood flow during and after 5 minutes exposure was quantified using Laser Doppler Perfusion Imaging Technique. The device was positioned between the wrist and the dorsal part of the backhand. Because the increase in blood flow could be caused by a release of nitric oxide (NO) from the vascular endothelial cells we tested NO production with a fluorescence marker and quantified the measurements in cell cultures of human umbilical endothelial cells (HUVEC). Exposure increased blood flow significantly, persisted several minutes, and then disappeared gradually. In order to assess the effect of a static magnetic field, the measurements were also carried out with the device shutoff. Here, only a small increase in blood flow was noted. The application of the rotating MagCell-SR to the HUVEC cultures leads to a rapid onset and a significant increase of NO release after 15 minutes. Thus, frequencies between 4 and 12 Hz supplied by the device improve microcirculation significantly. Therefore, this device can be used in all clinical situations where an improvement of the microcirculation is useful like in chronic wound healing deficits.

SELECTION OF CITATIONS
SEARCH DETAIL