Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Metab ; 42: 101079, 2020 12.
Article in English | MEDLINE | ID: mdl-32919096

ABSTRACT

OBJECTIVE: Perinatal exposure to maternal obesity results in predisposition of offspring to develop obesity later in life. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of food intake as a cause. We aimed to define how maternal obesity impacts early development of the hypothalamus to program lasting dysfunction in feeding regulatory pathways. METHODS: Mice offspring of diet-induced obese mothers were compared to the offspring of lean control mothers. We analysed gene expression in the fetal hypothalamus, alongside neurosphere assays to investigate the effects of maternal obesity on neural progenitor cell proliferation in vitro. Western blotting was used to investigate the insulin signalling pathway in the fetal hypothalamus. Characterisation of cell type and neuropeptide profile in adulthood was linked with analyses of feeding behaviour. RESULTS: There was a reduction in the expression of proliferative genes in the fetal hypothalamus of offspring exposed to maternal obesity. This reduction in proliferation was maintained in vitro when hypothalamic neural progenitor cells were grown as neurospheres. Hypothalamic fetal gene expression and neurosphere growth correlated with maternal body weight and insulin levels. Foetuses of obese mothers showed hypothalamic insulin resistance, which may be causative of reduced proliferation. Furthermore, maternal obesity activated the Notch signalling pathway in neonatal offspring hypothalamus, resulting in decreased neurogenesis. Adult offspring of obese mothers displayed an altered ratio of anorexigenic and orexigenic signals in the arcuate nucleus, associated with an inability to maintain energy homeostasis when metabolically challenged. CONCLUSIONS: These findings show that maternal obesity alters the molecular signature in the developing hypothalamus, which is associated with disrupted growth and development of hypothalamic precursor cells and defective feeding regulation in adulthood. This is the first report of fetal hypothalamic insulin resistance in an obese pregnancy and suggests a mechanism by which maternal obesity causes permanent changes to hypothalamic structure and function.


Subject(s)
Hypothalamus/embryology , Insulin Resistance/physiology , Obesity, Maternal/physiopathology , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight , Brain/metabolism , Diet, High-Fat , Feeding Behavior , Female , Fetus/metabolism , Fetus/physiopathology , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Hypothalamus/metabolism , Insulin/metabolism , Male , Maternal-Fetal Exchange/physiology , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurons/metabolism , Obesity/metabolism , Obesity/physiopathology , Obesity, Maternal/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Weight Gain
2.
Int J Obes (Lond) ; 41(2): 268-278, 2017 02.
Article in English | MEDLINE | ID: mdl-27733761

ABSTRACT

OBJECTIVE: To investigate whether the Cdc2-like kinase 2 (CLK2) is expressed in hypothalamic neurons and if it is, whether the hypothalamic CLK2 has a role in the regulation of energy balance. SUBJECTS: Swiss mice on chow or high-fat diet (HFD) and db/db mice on chow diet were used to address the role of CLK2 in the hypothalamus. RESULTS: Hypothalamic CLK2Thr343 phosphorylation, which induces CLK2 activity, is regulated in vivo by refeeding, insulin and leptin, in a PI3K (phosphoinositide 3-kinase)-dependent manner. The reduction of CLK2 expression in the hypothalamus, by chronic pharmacological inhibition with TG003 or by chronic knockdown with small interfering RNA was sufficient to abolish the anorexigenic effect of insulin and leptin, to increase body weight, fat mass, food intake and to decrease energy expenditure in mice on chow. In contrast, CLK2Thr343 phosphorylation in the hypothalamus in response to insulin, leptin or refeeding was impaired in mice on HFD or in db/db mice. Chronic CLK2 inhibition in the hypothalamus was associated with a slight increase in the fasting blood glucose levels, reduction in PEPCK (phosphoenolpyruvate carboxykinase) expression in the liver and enhanced glucose production from pyruvate, suggesting a regulation of hepatic glucose production. Further, overexpressing CLK2 in the mediobasal hypothalami of mice on HFD or in db/db mice by adenovirus partially reversed the obese phenotype. CONCLUSIONS: Thus, our results suggest that protein CLK2 integrates some important hypothalamic pathways, and may be a promising molecule for new therapeutic approaches for obesity and diabetes.


Subject(s)
CDC2-CDC28 Kinases/metabolism , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/physiology , Hypothalamus/metabolism , Insulin Resistance/physiology , Obesity/pathology , Phosphorylation/physiology , Animals , CDC2-CDC28 Kinases/pharmacology , Diet, High-Fat , Disease Models, Animal , Eating , Energy Metabolism/drug effects , Homeostasis/drug effects , Hypothalamus/drug effects , Lipid Metabolism , Male , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL