Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Plant Foods Hum Nutr ; 79(1): 143-150, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206481

ABSTRACT

Opuntia ficus-indica fruits have been widely used due to their nutritional composition and beneficial effects on health, particularly against chronic diseases such as diabetes, obesity, cardiovascular diseases and cancer, among others. In recent years, prickly pear peel and pulp extracts have been characterised, and a high number of bioactive compounds have been identified. This study aimed to analyse the triglyceride-lowering effect of prickly pear peel and pulp extracts obtained from fruits of three varieties (Pelota, Sanguinos, and Colorada) in 3T3-L1 maturing and mature adipocytes. At a concentration of 50 µg/mL, peel extracts from Colorada reduced triglyceride accumulation in pre-adipocytes and mature adipocytes. Additionally, at 25 µg/mL, Pelota peel extract decreased triglyceride content in mature adipocytes. Moreover, maturing pre-adipocytes treated with 50 and 25 µg/mL of Sanguinos pulp extract showed a reduction of triglyceride accumulation. In addition, the lipid-lowering effect of the main individual betalain and phenolic compounds standards were assayed. Piscidic acid and isorhamnetin glycoside (IG2), found in Colorada peel extract, were identified as the bioactive compounds that could contribute more notably to the triglyceride-lowering effect of the extract. Thus, the betalain and phenolic-rich extracts from Opuntia ficus indica fruits may serve as an effective tool in obesity management.


Subject(s)
Opuntia , Mice , Animals , Fruit/chemistry , 3T3-L1 Cells , Phenols/analysis , Betalains , Plant Extracts/pharmacology , Triglycerides , Lipids
2.
Molecules ; 26(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34500688

ABSTRACT

High hydrostatic pressure (HHP) is a commercial processing technology which can enhance the health potential of foods by improving the bioaccessibility of their bioactive compounds. Our aim was to study the bioaccessibility and digestive stability of phenolic compounds and betalains in prickly pear fruits (Opuntia ficus-indica L. Mill. var. Pelota and Sanguinos) treated with HHP (100, 350, and 600 MPa; come-up time and 5 min). The effects of HHP on pulps (edible fraction) and peels (sources of potential healthy ingredients) were assessed. In pulps, betanin bioaccessibility increased (+47% to +64%) when treated at 350 MPa/5 min. In HHP-treated pulps, increases in the bioaccessibility of piscidic acid (+67% to +176%) and 4-hydroxybenzoic acid glycoside (+126% to 136%) were also observed. Isorhamnetin glycosides in peels treated at 600 MPa/CUT had higher bioaccessibility (+17% to +126%) than their controls. The effects of HHP on the bioaccessibility of health-promoting compounds are not exclusively governed by extractability increases of antioxidants in the food matrix (direct effects). In this work we found evidence that indirect effects (effects on the food matrix) could also play a role in the increased bioaccessibility of antioxidants in fruits treated with HHP.


Subject(s)
Betalains/chemistry , Fruit/chemistry , Antioxidants/chemistry , Opuntia/chemistry , Phenols/chemistry , Plant Extracts/chemistry
3.
Plant Foods Hum Nutr ; 76(3): 354-362, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363561

ABSTRACT

Current in vitro methodologies neglect or subestimate the contribution of betalains to antioxidant capacity in foods because they do not reflect their in vivo biological mechanisms. In this study, we assessed the sensibility of the lipoxygenase-fluorescein (LOX-FL) method towards betalains, phenolic compounds and ascorbic acid from Opuntia spp. fruits; and (ii) the antioxidant capacity of peel and pulp extracts from Opuntia ficus-indica L. Mill (var. Fresa, Colorada and Blanco) and Opuntia stricta var. Dillenii; by comparing the LOX-FL method to traditional antioxidant methods (ORAC and TEAC). The spectrophotometric monitoring of the LOX-FL reaction avoided interference caused by betalain pigments. Indicaxanthin and betanin showed high antiperoxidative and radical scavenging mechanisms in the LOX-FL assay. O. stricta var. Dillenii tissues the highest antioxidant capacity which correlated with betanin content. ORAC and TEAC antioxidant methods were less sensible towards betalain antioxidant activity. To our knowledge, this is the first time the LOX-FL antioxidant method has been used on betalains and betalain-rich foods.


Subject(s)
Opuntia , Antioxidants , Betalains , Fruit , Lipoxygenase , Plant Extracts/pharmacology
4.
Food Chem ; 342: 128087, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077279

ABSTRACT

Cactus berry (Myrtillocactus geometrizans) is a scarcely studied Mexican wild fruit. These fruits could contribute to reduce the risk of degenerative chronic diseases due to their bioactive profile. The aim of this work was to study the betalains and phenolic profile in cactus berry, their in vitro biological activities and gastrointestinal digestive stability and bioaccessibility. 43 metabolites were identified by HPLC-DAD-ESI-QTOF (8 betaxanthins, 8 betacyanins, 13 flavonoids, 6 phenolic acids). Phyllocactin and Isorhamnetin rhamnosyl-rutinoside (IG2) were the most abundant metabolites (5876 and 396 µg/g dw) which were also bioaccessible (16 and 21%, respectively). Pulps showed higher (p ≤ 0.05) antioxidant activity by the Oxygen Radical Absorbance Capacity (27 mM Trolox equivalents). The anti-hyperglycemic activity was highest (p ≤ 0.05) in peel and pulp tissues (85% α-glucosidase and 8% α-amylase inhibition). An 83% inhibition of hyaluronidase showed high anti-inflammatory activity. Cactus berry fruit should be considered a promising fruit candidate for a sustainable healthy diet.


Subject(s)
Betalains/chemistry , Cactaceae/chemistry , Phenols/chemistry , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Betalains/analysis , Betalains/metabolism , Cactaceae/metabolism , Chromatography, High Pressure Liquid , Digestion , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/metabolism , Fruit/chemistry , Fruit/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Phenols/analysis , Phenols/metabolism , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
5.
Food Res Int ; 130: 108909, 2020 04.
Article in English | MEDLINE | ID: mdl-32156361

ABSTRACT

High hydrostatic pressure (HHP) promotes the release of bioactive compounds from their intracellular compartments making them more bioaccessible. Our aim was to propose a schematic tissue model to explain the release mechanisms of betalains and phenolic compounds in vegetable cells submitted to HHP by analyzing cell microstructure, cell morphology, cell viability and the localization of bioactive compounds in prickly pear fruits. Prickly pear slices were pressurized at 100, 350 and 600 MPa at 20 °C. Chlorenchyma cells (in peels) and parenchyma cells (in pulps) were analyzed by transmission electron microscopy, confocal laser scanning microscopy and optical microscopy. After pressurization, the respiration and ethylene production of processed fruits were measured every 6 h (during storage at 16 °C and 75% RH for 24 h). In chlorenchyma cells, HHP ruptured betalain-storing vesicles in the cytoplasm and possibly increased the activity of endogenous enzymes. Contrarily, HHP released betalains from the vacuoles of parenchyma cells due to breaking of the tonoplast where they presented higher stability. In both tissues, phenolic compounds were released from cell walls with increasing pressure and enhanced by cell wall ultrastructural modifications (100 MPa), rupture (350 MPa) and the rearrangement of microfibrillated cellulose (600 MPa). Prickly pears submitted to HHP presented advanced senescence marked by considerable ethylene increase and the gradual loss of CO2 production after 6 h. Cells were viable at 100 MPa by conserving intact cell membranes and after 24 h their respiration rates presented no significant differences compared to controls therefore indicating the possibility of synthesis of bioactive compound as a response to abiotic stress. We have proposed a new approach for analyzing the effects of HHP and have identified the storing of betalains in vesicles located in the cytoplasm of chlorenchyma cells for the first time. This study is the first to fathom the dynamic morphological changes and release mechanisms of bioactive compounds in vegetable cells subjected to HHP.


Subject(s)
Opuntia/chemistry , Opuntia/ultrastructure , Phytochemicals/analysis , Phytochemicals/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Betalains/chemistry , Fruit , Hydrostatic Pressure , Microscopy
6.
J Sci Food Agric ; 99(14): 6380-6391, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31283026

ABSTRACT

BACKGROUND: Prickly pears are potential candidates for the development of low-cost functional foods because they grow with low water requirements in arid regions of the world. They are sources of betalains and phenolic compounds, which have been reported to contribute to human health. The study of the biological activity of different varieties and of their isolated bioactive constitutes is fundamental in the design of functional foods. In this context, our objective is the assessment of the ability of Spanish and Mexican prickly-pear cultivars to inhibit enzymes related to type 2 diabetes and the inflammatory response, and the contribution of their bioactive compounds to their nutra-pharmaceutical potential. RESULTS: Prickly pear peels presented the highest antioxidant activity due to their high isorhamnetin glycoside content. Isorhamnetin glycosides showed significantly higher antioxidant and anti-inflammatory activity than aglycone, particularly isorhamnetin glucosyl-rhamnosyl-pentoside (IG2), which also reported antihyperglycemic activity. Morada, Vigor, and Sanguinos whole fruits exhibited moderate α-amylase inhibition and higher α-glucosidase inhibition, which is ideal for lowering glucose absorption in hyperglycemia management. Sanguinos peels presented the highest anti-inflammatory activity because of their high indicaxanthin content and isorhamnetin glycoside profile. CONCLUSIONS: In the design of prickly pear functional foods, technological processing should prioritize the retention or concentration of these bioactive compounds to preserve (or increase) their natural antioxidant, antihyperglycemic and anti-inflammatory activity. Peels of red and orange varieties should be further evaluated for antioxidant and anti-inflammatory purposes while whole fruits of red and purple varieties could be considered possible candidates for hyperglycemia management. © 2019 Society of Chemical Industry.


Subject(s)
Anti-Inflammatory Agents/chemistry , Diabetes Mellitus, Type 2/enzymology , Enzyme Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Pyrus/chemistry , Antioxidants/chemistry , Betalains/chemistry , Diabetes Mellitus, Type 2/metabolism , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Humans , Kinetics , Phenols/chemistry , Pyrus/classification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
7.
Food Res Int ; 123: 538-549, 2019 09.
Article in English | MEDLINE | ID: mdl-31285003

ABSTRACT

The carotenoid and carotenoid ester profile in astringent persimmon (Diospyros kaki Thunb., var. Rojo Brillante) was composed by 13 free xanthophylls, 8 hydrocarbon carotenes and 17 carotenoid esters. The stability and biaoccessibility of these carotenoids was determined by an adaptation of the INFOGEST protocol. Results showed that the stability of persimmon carotenoids ranged from 61 to 74%, depending on the digestion phase, being (all-E)-ß-cryptoxanthin and (all-E)-antheraxanthin 3-O-palmitate the most stable carotenoids. At the final step of the digestion (oral + gastric + duodenal phase), only traces of (all-E)-antheraxanthin, (all-E)-lutein and (all-E)-ß-cryptoxanthin were found in control samples due to the low efficiency of carotenoid micellization, which was affected by the high pectin content naturally present in persimmon tissues. Processing increased the overall carotenoid bioaccessibility to 54% in pressurized samples and to 25% in thermal treated ones. This effect depended on the processing technology as well as on the chemical structure of the carotenoid, being (all-E)-ß-cryptoxanthin and (all-E)-ß-cryptoxanthin laurate the most bioaccessible carotenoids in pressurized samples and (all-E)-ß-cryptoxanthin laurate and (all-E)-antheraxanthin the most bioaccessible ones in pasteurized ones.


Subject(s)
Diospyros/chemistry , Fruit/chemistry , Hot Temperature , Hydrostatic Pressure , Antioxidants/analysis , Beta-Cryptoxanthin/analysis , Carotenoids/analysis , Food Analysis , Food Handling , Freeze Drying , Laurates , Lutein/analysis , Models, Biological , Pasteurization , Tandem Mass Spectrometry , Xanthophylls/analysis
SELECTION OF CITATIONS
SEARCH DETAIL