Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mol Autism ; 11(1): 88, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33208191

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26-28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams-Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. METHODS: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. RESULTS: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. LIMITATIONS: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. CONCLUSIONS: These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.


Subject(s)
Autism Spectrum Disorder/pathology , Cerebral Cortex/pathology , Chromosome Duplication/genetics , Chromosomes, Human, Pair 7/genetics , High-Throughput Screening Assays , Histone Deacetylase Inhibitors/pharmacology , Neurons/pathology , Transcription Factors, TFII/genetics , Autism Spectrum Disorder/genetics , Chromosomes, Human, Pair 7/metabolism , DNA Copy Number Variations/genetics , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors, TFII/metabolism , Transcription, Genetic/drug effects
2.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575647

ABSTRACT

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Subject(s)
Chromatin/metabolism , Haploinsufficiency/genetics , Intellectual Disability/genetics , Transcription, Genetic , YY1 Transcription Factor/genetics , Acetylation , Adolescent , Base Sequence , Child, Preschool , Chromatin Immunoprecipitation , Cohort Studies , Enhancer Elements, Genetic/genetics , Female , Gene Ontology , Haplotypes/genetics , Hemizygote , Histones/metabolism , Humans , Lymphocytes/metabolism , Male , Methylation , Models, Molecular , Mutation, Missense/genetics , Protein Binding/genetics , Protein Domains , YY1 Transcription Factor/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL