Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Neurosci ; 24(10): 1488-1500, 2021 10.
Article in English | MEDLINE | ID: mdl-34426698

ABSTRACT

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


Subject(s)
Brain/physiopathology , Epilepsy/physiopathology , Neurons , Adult , Benzothiazoles/pharmacology , Brain/growth & development , Calcium Signaling , Child, Preschool , Epilepsy/diagnostic imaging , Female , Humans , Induced Pluripotent Stem Cells , Methyl-CpG-Binding Protein 2/genetics , Nerve Net/physiopathology , Neurogenesis/genetics , Neuroimaging , Rett Syndrome/diagnostic imaging , Rett Syndrome/physiopathology , Single-Cell Analysis , Synapses , Toluene/analogs & derivatives , Toluene/pharmacology , Transcriptome
2.
J Cogn Neurosci ; 22(7): 1452-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19583475

ABSTRACT

Ketamine, an N-methyl-D-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner. We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm. One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity. We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity. Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings. In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power. These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia.


Subject(s)
Acoustic Stimulation , CA3 Region, Hippocampal/physiology , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Sensory Gating/physiology , Theta Rhythm/drug effects , Animals , CA3 Region, Hippocampal/drug effects , Evoked Potentials , Mice , Nerve Net , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL