Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Angew Chem Int Ed Engl ; 63(17): e202400372, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38445354

ABSTRACT

The second near-infrared (NIR-II) theranostics offer new opportunities for precise disease phototheranostic due to the enhanced tissue penetration and higher maximum permissible exposure of NIR-II light. However, traditional regimens lacking effective NIR-II absorption and uncontrollable excited-state energy decay pathways often result in insufficient theranostic outcomes. Herein a phototheranostic nano-agent (PS-1 NPs) based on azulenyl squaraine derivatives with a strong NIR-II absorption band centered at 1092 nm is reported, allowing almost all absorbed excitation energy to dissipate through non-radiative decay pathways, leading to high photothermal conversion efficiency (90.98 %) and strong photoacoustic response. Both in vitro and in vivo photoacoustic/photothermal therapy results demonstrate enhanced deep tissue cancer theranostic performance of PS-1 NPs. Even in the 5 mm deep-seated tumor model, PS-1 NPs demonstrated a satisfactory anti-tumor effect in photoacoustic imaging-guided photothermal therapy. Moreover, for the human extracted tooth root canal infection model, the synergistic outcomes of the photothermal effect of PS-1 NPs and 0.5 % NaClO solution resulted in therapeutic efficacy comparable to the clinical gold standard irrigation agent 5.25 % NaClO, opening up possibilities for the expansion of NIR-II theranostic agents in oral medicine.


Subject(s)
Cyclobutanes , Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Nanoparticles/therapeutic use , Theranostic Nanomedicine/methods , Phenols/pharmacology , Cyclobutanes/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy , Photoacoustic Techniques/methods , Cell Line, Tumor
2.
ACS Appl Mater Interfaces ; 15(25): 29827-29840, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37314154

ABSTRACT

In photodynamic therapy (PDT), elevated reactive oxygen species (ROS) activate tumor cell protective autophagy, therefore attenuating the antitumor function of therapy. Hence, inhibition of protective autophagy in tumors can improve the antitumor effect of PDT. Herein, an innovative nanotraditional Chinese medicine system ((TP+A)@TkPEG NPs), which remodeled autophagy homeostasis, was fabricated. A photosensitizer aggregation inducing emission (AIE) and autophagy modulator triptolide (TP, an active ingredient of Tripterygium wilfordii Hook F) were encapsulated into ROS-responsive nanoparticles to improve antitumor effect of PDT in treatment of triple negative breast cancer. We proved that (TP+A)@TkPEG NPs effectively elevated intracellular ROS levels, activated ROS-responsive release of TP and inhibited the proliferation of 4T1 cells in vitro. More importantly, it sharply reduced autophagy related genes transcription and proteins expression in 4T1 cells, then promote cell apoptosis. In addition, this nanoherb therapeutic system effectively orientated to tumor sites, achieved efficient inhibition of tumor, and extended the survival time of 4T1-bearing mice in vivo. Further results confirmed that (TP+A)@TkPEG NPs remarkably inhibit the expression level of autophagy related initiation gene (becline-1) and elongation protein (light chain 3B) in tumor microenvironment and then block PDT induced protective autophagy. In brief, this system can remodel autophagy homeostasis and serve as an innovative approach for treatment of triple negative breast cancer.


Subject(s)
Nanoparticles , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Autophagy , Homeostasis , Cell Line, Tumor , Tumor Microenvironment
3.
Biomaterials ; 289: 121779, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36099712

ABSTRACT

Due to the aggregation-caused quenching (ACQ) and weak photo-penetrating ability, the application of phototheranostic agents in drug delivery field is greatly limited. Ferroptosis, a newly discovered cell death mode, has not been extensively studied in the field of phototherapy up to now. Here, a new near-infrared II (NIR-II) molecule with aggregation-induced emission (AIE) property (named TSST) co-assembled with DHA-PEG and ferrocene as nanoparticles (DFT-NP), which was rationally designed and synthesized. The DFT-NP exhibited enhanced NIR-II fluorescence, photothermal, photoacoustic, magnetic resonance imaging, AIE and ferroptosis capacities. The NIR-II fluorescence intensity of obtained nanoparticles was improved, owing to the strong interaction between DHA and TSST, which limited the intramolecular rotation restriction and non-radiative attenuation of TSST to discourage energy dissipation in aggregation state. Inspiringly, the generated photothermal effect by DFT-NP can promote the Fenton reaction of ferrocene and H2O2, resulting in dissolution of the nanoparticles and cancer cells expedited ferroptosis via accumulation lipid free radicals of DHA. The released TSST enhanced the photothermal and photoacoustic imaging effects through removing the DHA restriction to restore the non-radiative attenuation. This work is the first example of nanoparticles that integrates four-mode imaging, photothermal and ferroptosis-induced therapy functions, which offers great advantages for potential clinical applications.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Photoacoustic Techniques , Cell Line, Tumor , Ferrous Compounds , Humans , Hydrogen Peroxide , Metallocenes , Neoplasms/therapy , Optical Imaging/methods , Photoacoustic Techniques/methods , Phototherapy/methods , Photothermal Therapy , Theranostic Nanomedicine/methods
4.
Ultrason Sonochem ; 86: 106005, 2022 May.
Article in English | MEDLINE | ID: mdl-35429898

ABSTRACT

Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesised with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodology The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27 µmol Fe(Ⅱ)E/g DW) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64 µmol TE/g DW), closely matching the experimental results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Additionally, DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens.


Subject(s)
Deep Eutectic Solvents , Polyphenols , Antioxidants/chemistry , Flavonoids/chemistry , Plant Extracts/chemistry , Polyphenols/analysis , Solvents/chemistry , Ultrasonics
5.
J Food Sci ; 87(3): 968-981, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35142370

ABSTRACT

Total phenolic content (TPC), phenolic profiles, and antioxidant activity of free and bound extracts of Sargassum polycystum, obtained by different extraction solvents and hydrolysis methods, were investigated. Aqueous acetone afforded the highest free TPC and antioxidant ability, followed by aqueous ethanol and aqueous methanol. Twelve free phenolic compounds were identified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), including two hydroxycinnamic acids, seven flavonoids, one stilbene, and two phlorotannins. Three to nine different free phenolic compounds were extracted by these solvents with different compositions, including nine by 70% acetone and eight by 70% methanol, 70% ethanol, and 50% ethanol. The highest total content of free phenolic compounds determined by high-performance liquid chromatography-diode array detection was obtained from 70% ethanol. Alkaline hydrolysis afforded higher bound TPC (274.27 mg GAE/100 g DW) and antioxidant ability than acid hydrolysis. Five bound phenolic compounds were characterized by UHPLC-MS and five were released from alkaline hydrolysis, whereas two were released from acid hydrolysis. Total content of bound phenolic compounds released by alkaline hydrolysis was 14.68-fold higher than that by acid hydrolysis. The free and bound TPC, phenolic profiles, and antioxidant activities depended on the extraction solvent used. These results indicate that S. polycystum is a potentially useful antioxidant source and contribute to the development of seaweed-based functional foods. PRACTICAL APPLICATION: Phenolics are usually divided into free and bound forms based on their extractability and interaction with cell wall components. The nutritional effects of bound phenolics in algae have long been neglected. These topics contribute to the development of seaweed-based functional foods.


Subject(s)
Antioxidants , Sargassum , Antioxidants/analysis , Flavonoids/analysis , Phenols/analysis , Plant Extracts/chemistry
6.
Adv Mater ; 34(9): e2106994, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34921573

ABSTRACT

Fluorescent probes capable of precise detection of atherosclerosis (AS) at an early stage and fast assessment of anti-AS drugs in animal level are particularly valuable. Herein, a highly bright aggregation-induced emission (AIE) nanoprobe is introduced by regulating the substituent of rhodanine for early detection of atherosclerotic plaque and screening of anti-AS drugs in a precise, sensitive, and rapid manner. With dicyanomethylene-substituted rhodanine as the electron-withdrawing unit, the AIE luminogen named TPE-T-RCN shows the highest molar extinction coefficient, the largest photoluminescence quantum yield, and the most redshifted absorption/emission spectra simultaneously as compared to the control compounds. The nanoprobes are obtained with an amphiphilic copolymer as the matrix encapsulating TPE-T-RCN molecules, which are further surface functionalized with anti-CD47 antibody for specifically binding to CD47 overexpressed in AS plaques. Such nanoprobes allow efficient recognition of AS plaques at different stages in apolipoprotein E-deficient (apoE-/- ) mice, especially for the recognition of early-stage AS plaques prior to micro-computed tomography (CT) and magnetic resonance imaging (MRI). These features impel to apply the nanoprobes in monitoring the therapeutic effects of anti-AS drugs, providing a powerful tool for anti-AS drug screening. Their potential use in targeted imaging of human carotid plaque is further demonstrated.


Subject(s)
Atherosclerosis , Nanoparticles , Rhodanine , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Drug Evaluation, Preclinical , Fluorescent Dyes/chemistry , Mice , Nanoparticles/chemistry , X-Ray Microtomography
7.
Adv Healthc Mater ; 10(24): e2101063, 2021 12.
Article in English | MEDLINE | ID: mdl-34494397

ABSTRACT

The development of photothermal agents with high photothermal conversion efficiency (PCE) can help to reduce drug and laser dosage, but still remains a big challenge. Herein, a novel approach is reported to design photothermal agents with high PCE values by promoting nonradiative heat generation processes through the cooperation of twisted intramolecular charge transfer (TICT) and molecular motions. Within the designed molecule 2DMTT-BBTD, the tetraphenylethenes act as molecular rotors, the long alkyl chain grafted thiophene helps to twist the molecular geometry to facilitate TICT state formation and preserve molecular motions in aggregate, while the strong electron-withdrawing BBTD unit enhances TICT effect. 2DMTT-BBTD exhibits NIR-absorption and a high PCE value of 74.8% under 808 nm laser irradiation. Gambogic acid (GA) which surmounts tumor cell thermotolerance by inhibiting heat shock protein 90 (HSP90) expression is coloaded into the nanoparticles, RGD peptide is further introduced to the nanoparticle surface to improve tumor accumulation. The resultant nanoparticles facilitate the effective low-temperature hyperthermia therapy of muscle-invasive bladder cancer (MIBC) with minimal damage to surrounding heathy tissues. This work delivers a new design concept for development of highly efficient photothermal agents, which also provides a safer approach for noninvasive treatment of MIBC and other malignant tumors.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Urinary Bladder Neoplasms , Humans , Muscles , Neoplasms/therapy , Phototherapy , Theranostic Nanomedicine , Urinary Bladder Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL