Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778741

ABSTRACT

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Subject(s)
Acute Kidney Injury , NF-kappa B , Saponins , Animals , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , NF-kappa B/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Phosphoinositide Phospholipase C
2.
J Ethnopharmacol ; 315: 116694, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37253396

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pulsatilla chinensis (Bunge) Regel is a traditional Chinese herbal medicine used to treat intestinal amebiasis, malaria, vaginal trichomoniasis, and bacterial infections. Anemoside B4 (AB4), a pentacyclic triterpenoid saponin, is one of the primary bioactive substances in Pulsatilla chinensis (Bunge) Regel, and gavage administration of AB4 to animals has been demonstrated to exhibit anticancer, anti-inflammatory, and antiviral actions. However, AB4 exposure in plasma is very low after oral administration, and the biotransformation of AB4 in vivo after oral administration remains unknown. AIM OF THE STUDY: The reason for conducting this research was to explore at the metabolite profile of AB4 in rats following oral administration. Additionally, we aimed to develop an appropriate extravascular formulation to increase the exposure and duration of AB4 in vivo. MATERIALS AND METHODS: A well-validated HPLC-QQQ-MS/MS method was used for the quantification of AB4 in plasma and was further applied to evaluate and compare the pharmacokinetic properties of AB4 dissolved in a saline solution and AB4 formulations in a rectal suppository or enteric capsule. Reliable UHPLC coupled to Q-Exactive Plus high-resolution MS was used to identify the metabolites in rat plasma, bile, urine, and faeces. RESULTS: AB4 was extensively metabolized, and a total of 29 metabolites were identified. The primary metabolic routes included deglycosylation, oxidation, dehydrogenation, reduction, sulfation, hydration, acetylation, and glucuronidation. The pharmacokinetic comparison showed that both the rectal suppository and enteric capsule increased the exposures of AB4 and one of its active metabolites, 23-hydroxybetulinic acid (23-HA). Notably, rectal suppositories increased systemic AB4 exposure (AUC0-∞) by approximately 49 and 28 times higher than that of the AB4 saline solution and enteric capsules, respectively. The t1/2 of AB4 was extended to approximately 7 h after rectal administration compared to 2 h after oral administration. CONCLUSION: Overall, our study demonstrated that the mismatched exposure-response relationship of AB4 could result from extensive metabolism in the gastrointestinal and circulatory systems. Thus, a rectal suppository could be an alternative formulation of AB4 to obtain both higher and longer exposure.


Subject(s)
Saponins , Tandem Mass Spectrometry , Female , Rats , Animals , Suppositories , Tandem Mass Spectrometry/methods , Saline Solution , Saponins/pharmacology , Administration, Oral
3.
Phytomedicine ; 116: 154884, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37209605

ABSTRACT

BACKGROUND: Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE: To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS: In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-ß1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS: PE reversed TGF-ß1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS: Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Triterpenes , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Lung Neoplasms/pathology , Transforming Growth Factor beta1/pharmacology , NF-E2-Related Factor 2 , Epithelial-Mesenchymal Transition , Reactive Oxygen Species , Cell Line, Tumor , Triterpenes/pharmacology , Drug Resistance, Neoplasm
4.
J Ethnopharmacol ; 314: 116478, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37121449

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. AIM OF THIS STUDY: In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. MATERIALS AND METHODS: Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1ß) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/c mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. RESULTS: TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1ß, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1ß levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. CONCLUSIONS: This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.


Subject(s)
Acute Lung Injury , Inflammasomes , Male , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6 , Lipopolysaccharides/pharmacology , Phospholipase C gamma/metabolism , Reactive Oxygen Species/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Signal Transduction , Cytokines/pharmacology , Anti-Inflammatory Agents/adverse effects , Caspases/metabolism , Mice, Inbred C57BL
5.
Arab J Chem ; 16(5): 104663, 2023 May.
Article in English | MEDLINE | ID: mdl-36816510

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a rapidly emerging infectious disease caused by SARS-CoV-2. Inflammatory factors may play essential roles in COVID-19 progression. Huashi Baidu Decoction (HSBD) is a traditional Chinese medicine (TCM) formula that can expel cold, dispel dampness, and reduce inflammation. HSBD has been widely used for the treatment of COVID-19. However, the active ingredients and potential targets for HSBD to exert anti-inflammatory or anti-SARS-CoV-2 effects remain unclear. In this paper, the active ingredients with anti-inflammatory or anti-viral effects in HSBD and their potential targets were screened using the Discovery Studio 2020 software. By overlapping the targets of HSBD and COVID-19, 8 common targets (FYN, SFTPD, P53, RBP4, IL1RN, TTR, SRPK1, and AKT1) were identified. We determined 2 key targets (P53 and AKT1) by network pharmacology. The main active ingredients in HSBD were evaluated using the key targets as receptor proteins for molecular docking. The results suggested that the best active ingredients Kaempferol2 and Kaempferol3 have the potential as supplements for the treatment of COVID-19.

6.
Biomed Pharmacother ; 154: 113576, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36007279

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Plants, Medicinal , Acetylcholinesterase/metabolism , Aged , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , China , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Neurodegenerative Diseases/drug therapy , Plants, Medicinal/metabolism
7.
Sci Rep ; 12(1): 12697, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35882882

ABSTRACT

Chemical vapor deposition-based growth techniques allow flexible design of complementary metal-oxide semiconductor (CMOS) compatible materials. Here, we report the deuterated silicon-rich nitride films grown using plasma-enhanced chemical vapor deposition. The linear and nonlinear properties of the films are characterized, and we experimentally confirm that the silicon-rich nitride films grown with SiD4 eliminates Si-H and N-H related absorption. The performance of identical waveguides for films grown with SiH4 and SiD4 are compared demonstrating a 2 dB/cm improvement in line with that observed in literature. Waveguides fabricated on the SRN:D film are further shown to possess a nonlinear parameter of 95 W-1 m-1, with the film exhibiting a linear and nonlinear refractive index of 2.46 and 9.8 [Formula: see text] 10-18 m2W-1 respectively.

8.
BMC Biotechnol ; 22(1): 9, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35255883

ABSTRACT

BACKGROUND: Antrodia cinnamomea, a rare medicinal fungus, has been increasingly studied in recent years because of its abundant secondary metabolites which are beneficial to humans. However, there is a lack of research on its polyphenols which are of good research value due to their antioxidant, anti-inflammatory, hypoglycemic and other activities. RESULTS: In this study, the effects of different extraction conditions on the yield of its polyphenols were investigated. Deep-Eutectic Solvents composed of choline chloride and malonic acid had the best extraction efficiency, with the optimal extraction conditions being as follows: a solid-liquid ratio of 40 mg/mL, an extraction temperature of 55 °C, an extraction time of 70 min and a DES with 20% water content. Under these conditions, the extraction yield of polyphenols reached 22.09 mg/g which was about 2 times that of alcohol-based extraction (10.95 mg/g). In vitro antioxidant test results further showed that polyphenols from A. cinnamomea had strong antioxidant activities. When the concentration of polyphenols reached 0.1 mg/mL of polyphenols, the scavenging activity of free radical basically reached its maximum, with values of 94.10%, 83.34% and 95.42% for DPPH, ABTS+ and ·OH scavenging. In this case, the corresponding IC50 values were 0.01, 0.014 and 0.007 mg/mL, respectively. CONCLUSIONS: This study lays the foundation for the efficient extraction and application of polyphenols from A. cinnamomea.


Subject(s)
Antioxidants , Polyphenols , Antioxidants/chemistry , Humans , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyporales , Solvents/chemistry
9.
Bioorg Chem ; 116: 105274, 2021 11.
Article in English | MEDLINE | ID: mdl-34455301

ABSTRACT

Traditional Chinese herbal compound prescription in Xuanfei Baidu Tang (XBT) has obvious effects in the treatment of COVID-19. However, its effective compounds and targets for the treatment of COVID-19 remain unclear. Computer-Aided Drug Design is used to virtually screen out the anti-inflammatory or anti-viral compounds in XBT, and predict the potential targets by Discovery Studio 2020. Then, we searched for COVID-19 targets using Genecards databases and Protein Data Bank (PDB) databases and compared them to identify targets that were common to both. Finally, the target we screened out is: TP53 (Tumor Protein P53). This article also shows that XBT in the treatment of COVID-19 works in a multi-link and overall synergistic manner. Our results will help to design the new drugs for COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antiviral Agents/chemistry , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Humans , Medicine, Chinese Traditional , Molecular Structure , SARS-CoV-2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
10.
Bioorg Chem ; 114: 105149, 2021 09.
Article in English | MEDLINE | ID: mdl-34252860

ABSTRACT

For the Alzheimer's disease (AD) with complex pathogenesis, single target drugs represent one of the most effective therapeutic strategies in clinical. However, the traditional concept of "a disease, a target" is difficult to find very effective drugs, and multi-target drugs have already become new hot spot in drug development for this disease. In our present study, our efforts toward discovering new cholinesterase (ChE) inhibitors aided by computational methods will provide useful information as anti-AD agents in the future. The best 3D-QSAR acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors pharmacophore hypotheses Hypo1 A and Hypo1 B were generated and validated by HypoGen program in Discovery Studio 2016 based on the training set of flavonoids, and then they were used as 3D query for screening the ZINC database. Next, the hit molecules were then subjected to the ADMET and molecular docking study to prioritize the compounds. Finally, 6 compounds showed good estimated activities and promising ADMET properties. The result of best compound ZINC08751495 with AChE estimate activity (0.028), BChE estimate activity (1.55), AChE fit value (9.369), BChE fit value (8.415), AChE -CDOCKER ENERGY (30.22), BChE -CDOCKER ENERGY (33.13) has the potential for further development as a supplement to treat Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Drug Design , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship
11.
Phytother Res ; 35(8): 4485-4498, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33977594

ABSTRACT

Acute lung injury (ALI) is a serious clinical disease. Rotundic acid (RA), a natural ingredient isolated from Ilex rotunda Thunb, exhibits multiple pharmacological activities. However, RA's therapeutic effect and mechanism on ALI remain to be elucidated. The present study aimed to further clarify its regulating effects on inflammation in vitro and in vivo. Our results indicated that RA significantly inhibited the overproduction of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RA decreased ROS production and calcium influx. In addition, RA inhibited the activation of PI3K, MAPK, and NF-κB pathways and enhanced the activity of nuclear factor E2-related factor 2 (Nrf2) signaling. The cellular thermal shift assay and docking results indicated that RA bind to TLR4 to block TLR4 dimerization. Furthermore, RA pretreatment effectively inhibited ear edema induced by xylene and LPS-induced endotoxin death and had a protective effect on LPS-induced ALI. Our findings collectively indicated that RA has anti-inflammatory effects, which may serve as a potential therapeutic option for pulmonary inflammation.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents , Toll-Like Receptor 4 , Triterpenes/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Signal Transduction , Toll-Like Receptor 4/metabolism
12.
Int J Med Sci ; 18(1): 157-168, 2021.
Article in English | MEDLINE | ID: mdl-33390784

ABSTRACT

Juniperus indica Bertol. is an herbal plant that belongs to the genus Juniperus, which is commonly used in traditional medicine to refresh the mind and for diuretic use. However, few studies have reported the function of J. indica Bertol. Hence, this study aimed to investigate the anti-tumor and synergistic potential of J. indica Bertol. extract (JIB extract) for melanoma cells. Our results indicated the anti-melanoma activity of JIB extract. JIB extract induced cell cycle arrest at the G0/G1 phase and decreased cyclin and cdk protein expressions. In addition, AKT/mTOR signaling and MAPK signaling were inhibited by JIB extract to suppress melanoma cell growth and proliferation. Additionally, JIB extract induced B16/F10 cell apoptosis via the caspase cascade. According to the JIB extract's anti-melanoma capacity, to assess the synergistic effects of cisplatin and JIB extract. The results demonstrated that JIB extract combined with cisplatin enhanced the inhibition of cell growth, proliferation, and survival through the obstruction of cell cycle progression and AKT/mTOR and MAPK signaling as well as the induction of cell apoptosis. Collectively, our results indicate that JIB extract showed anti-tumor effects and synergized with cisplatin against B16/F10 cells, indicating the possibility of JIB extract to be developed as adjuvant therapy for melanoma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cisplatin/pharmacology , Juniperus/chemistry , Melanoma/drug therapy , Plant Extracts/pharmacology , Skin Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/therapeutic use , Dogs , Drug Synergism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , MAP Kinase Signaling System/drug effects , Madin Darby Canine Kidney Cells , Melanoma/pathology , Mice , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
13.
Curr Mol Pharmacol ; 14(1): 101-111, 2021.
Article in English | MEDLINE | ID: mdl-32525787

ABSTRACT

BACKGROUND: Nuezhenide (NZD), an iridoid glycoside isolated from Ilex pubescens Hook. & Arn. var. kwangsiensis Hand.-Mazz., used as a traditional Chinese medicine for clearing away heat and toxic materials, displays a variety of biological activities such as anti-tumor, antioxidant, and other life-protecting activities. However, a few studies involving anti-inflammatory activity and the mechanism of NZD have also been reported. In the present study, the anti-inflammatory and antioxidative effects of NZD are illustrated. OBJECTIVE: This study aims to test the hypothesis that NZD suppresses LPS-induced inflammation by targeting the NF-κB pathway in RAW264.7 cells. METHODS: LPS-stimulated RAW264.7 cells were employed to detect the effect of NZD on the release of cytokines by ELISA. Protein expression levels of related molecular markers were quantitated by western blot analysis. The levels of ROS, NO, and Ca2+ were detected by flow cytometry. The changes in mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were observed and verified by fluorescence microscopy. Using immunofluorescence assay, the translocation of NF-κB/p65 from the cytoplasm into the nucleus was determined by confocal microscopy. RESULTS: NZD exhibited anti-inflammatory activity and reduced the release of inflammatory cytokines such as nitrite, TNF-α, and IL-6. NZD suppressed the expression of the phosphorylated proteins like IKKα/ß, IκBα, and p65. Besides, the flow cytometry results indicated that NZD inhibited the levels of ROS, NO, and Ca2+ in LPS-stimulated RAW264.7 cells. JC-1 assay data showed that NZD reversed LPS-induced MMP loss. Furthermore, NZD suppressed LPS-induced NF-B/p65 translocation from the cytoplasm into the nucleus. CONCLUSION: NZD exhibits anti-inflammatory effects through the NF-κB pathway on RAW264.7 cells.


Subject(s)
Anti-Inflammatory Agents/chemistry , Glucosides/chemistry , Pyrans/chemistry , Transcription Factor RelA/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Cytokines/metabolism , Glucosides/pharmacology , Humans , Interleukin-6/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , NF-KappaB Inhibitor alpha/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Pyrans/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
14.
J Ethnopharmacol ; 266: 113401, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-32980486

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine, the main pathogenesis of severe hand, foot and mouth disease (HFMD) is that the heat and wet poisons are deeply trapped in the viscera, which causes the deficiency of Qi and Yin in the patient's body. Ginsenoside Rb1 (Rb1) is the most abundant triterpenoid saponin in Panax quinquefolius L., which has the function of Qi-invigorating and Yin-nourishing. Enterovirus 71 (EV71) is one of the causative pathogens of HFMD, especially the form associated with some lethal complications. Therefore, the therapeutic effect of Rb1 on this disease caused by EV71 infection is worth exploring. AIM OF THE STUDY: We explored the effective antiviral activities of Rb1 against EV71 in vitro and in vivo and investigated its preliminary antiviral mechanisms. MATERIAL AND METHODS: EV71-infected two-day-old suckling mice model was employed to detect the antiviral effects of Rb1 in vivo. To detect the antiviral effects of Rb1 in vitro, cytopathic effect (CPE) reduction assay was performed in EV71-infected Rhabdomyosarcoma (RD) cells. Interferon (IFN)-ß interference experiment was employed to detect the antiviral mechanism of Rb1. RESULTS: In this paper, we first found that Rb1 exhibited strong antiviral activities in EV71-infected suckling mice when compared to those of ribavirin. Administration of Rb1 reduced the CPE of EV71-infected RD cells in a dose-dependent manner. Moreover, EV71-induced viral protein-1 (VP-1) expression was significantly reduced by Rb1 administration in vitro and in vivo. Furthermore, Rb1 treatment could induce high cellular and humoral immune responses in vivo. Meanwhile, Rb1 contributed to the enhanced Type I IFN responses and IFN-ß knockdown reversed the antiviral activity of Rb1 in vitro. CONCLUSION: In summary, our findings suggest that Rb1 is an immune-stimulatory agent and provide an insight into therapeutic potentials of Rb1 for the treatment of EV71 infection.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus A, Human/drug effects , Enterovirus Infections/drug therapy , Ginsenosides/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , Antiviral Agents/administration & dosage , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Enterovirus Infections/virology , Ginsenosides/administration & dosage , Humans , Mice , Mice, Inbred ICR , Panax/chemistry , Rhabdomyosarcoma/virology , Ribavirin/pharmacology
15.
J Immunol Res ; 2020: 7502301, 2020.
Article in English | MEDLINE | ID: mdl-33344657

ABSTRACT

Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1ß. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1ß in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protective Agents/pharmacology , Protein Multimerization/drug effects , Saponins/pharmacology , Toll-Like Receptor 4/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Adenosine Triphosphate , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protective Agents/chemistry , Saponins/chemistry , Structure-Activity Relationship , Toll-Like Receptor 4/chemistry
16.
Chin J Nat Med ; 18(7): 508-516, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32616191

ABSTRACT

Lung cancer is the leading cause of cancer death and the most common malignant tumor, the long-term survival of which has stagnated in the past several decades. Pileostegia tomentella Hand. Mazz is a traditional Chinese medicine called "Zhongliuteng" (ZLT) in the pharmacopeia, which has been proved to possess a potent anti-tumor effect on various cancers. In this study, the effects of ZLT N-butanol extraction (ZLTN) and ZLT ethyl acetate extraction (ZLTE) on the viability of non-small cell lung cancer cell (NSCLC) lines H1299 and A549 were evaluated. Here, we firstly reported that ZLTE significantly inhibited H1299 cells growth without affecting the release of lactate dehydrogenase (LDH). In addition, ZLTE induced caspase-dependent apoptosis in a concentration-dependent manner and increased the expression cleaved-PARP and decreased pro-caspase-3, pro-caspase-7, pro-caspase-8, and pro-caspase-9. Moreover, ZLTE increased the level of cellular reactive oxygen species (ROS) in H1299 cells to lead to apoptosis, which was reversed by N-acetyl-cysteine (NAC). Taken together, our results revealed that ZLTE induced caspase-dependent apoptosis via ROS generation, suggesting that ZLTE is a promising herbal medicine for the treatment of NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , A549 Cells , Humans
17.
Zhongguo Zhong Yao Za Zhi ; 45(1): 157-162, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237425

ABSTRACT

This paper was aimed to observe the effect of anemoside B4(hereinafter referred to as B4) on cisplatin-induced acute kidney injury in mice, and to investigate its possible mechanism in renal protection from inflammation and apoptosis aspects. Mice were divided into normal group, model group, dexamethasone positive group and B4 high, middle and low dose groups(5, 2.5, and 1.25 mg·kg~(-1 )doses). All the other mice groups except normal group were given with tail vein injection of cisplatin(15 mg·kg~(-1)) to induce acute kidney injury models. The drug administration was started on the day of modeling, and lasted for 4 days. After 1 hour of the last injection, orbital blood was collected. After the serum was separated, serum urea nitrogen(BUN), creatinine(Cre), total protein(TP), and albumin(ALB) were tested by using an automatic biochemical analyzer; the changes of kidney pathological morphology were observed by PAS staining; the protein expression levels of inflammatory factors including nucleotide binding oligomerization domain-like receptor(NLRP3), cysteinyl aspartate specific proteinase 1(caspase-1), interleukin-18(IL-18), interleukin-1ß(IL-1ß), tumor necrosis factor(TNF-α), and interleukin-6(IL-6) and apoptosis factors including p53, caspase-3, cleaved-caspase-3, Bcl-2 associated X protein(Bax), and B-cell lymphoma-2(Bcl-2) were analyzed by Western blot. The results showed that B4 significantly reduced the serum BUN and Cre contents, and alleviated pathological changes in renal tissues, such as the shedding and degeneration of renal tubular epithelial cells, tubulin tubule type. B4 significantly down-regulated the protein expressions of p53, Bax, cleaved-caspase-3 in the kidney and up-regulated the expression of Bcl-2/Bax. In model group, however, no significant up-regulation was observed in the protein expression levels of inflammatory cytokines(NLRP3, pro-caspase-1, IL-18, IL-1ß, TNF-α, IL-6). The results suggested that B4 had a certain protective effect on cisplatin-induced acute kidney injury, and could activate p53 signaling pathway related apoptotic factors. B4 renal protective effect was mainly related to the regulation of p53 signaling pathway, while NLRP3 inflammasome and related inflammatory factors had no obvious response in this model.


Subject(s)
Acute Kidney Injury/drug therapy , Apoptosis , Inflammation , Saponins/therapeutic use , Acute Kidney Injury/chemically induced , Animals , Apoptosis Regulatory Proteins , Cytokines , Kidney , Mice
18.
Phytomedicine ; 69: 153197, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32146298

ABSTRACT

BACKGOUND: Ginsenoside Rb1, the main active constituent of Panax ginseng, displays significant anti-inflammatory activity, although the mechanism has not been clearly unraveled. In this study, Rb1's mechanism of anti-inflammatory effects were investigated. METHODS: The flow cytometry and enzyme-linked immunosorbent assay (ELISA) were empolyed to detect pro-inflammatory cytokines release. The related protein and gene expression was investigated by western blotting and qRT-PCR. The dimerization of TLR4 was measured by co-immunoprecipitation and molecular docking assays. Cellular thermal shift assay was used for the determination of the binding of Rb1 and TLR4. For animal moldels, LPS- or cantharidin-induced acute kidney injury, LPS-induced septic death, and dimethyl benzene-induced ear edema were employed to investigate Rb1's anti-inflammatory activity in vivo. RESULTS: Rb1 significantly decreased inflammatory cytokines release in LPS-stimulated RAW264.7 cells and BMDMs, as well as COX-2 and iNOS amounts. Rb1 reduced LPS-associated calcium influx, ROS production, and NO generation. The NF-κB and MAPK axes participated in Rb1's anti-inflammatory effects. Molecular docking simulation indicated Rb1 bound to TLR4 to prevent TLR4 dimerization, as confirmed by co-immunoprecipitation and cellular thermal shift assay. Furthermore, MyD88 recruitment and TAK1 expression were altered by reduced TLR4 dimerization, indicating the TLR4-MyD88-NF-κB/MAPK pathways contributed to Rb1's anti-inflammatory process. In animal models, Rb1 markedly alleviated LPS- or cantharidin-induced acute kidney injury, rescued LPS-induced septic mice from death, and inhibited dimethyl benzene-induced mouse ear edema. CONCLUSION: Overall, these findings demonstrate Rb1 exhibits marked anti-inflammatory effects, suggesting Rb1 represents an optimal molecule for treating inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ginsenosides/pharmacology , MAP Kinase Signaling System/drug effects , Toll-Like Receptor 4/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cantharidin/toxicity , Ginsenosides/chemistry , HEK293 Cells , Humans , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Protein Multimerization , RAW 264.7 Cells , Rats, Sprague-Dawley , Toll-Like Receptor 4/chemistry
19.
Medicine (Baltimore) ; 99(3): e18878, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32011514

ABSTRACT

RATIONALE: Myalgia and elevated creatine kinase (CK) have been reported during the treatment of hyperthyroid patients. The causes of these symptoms are usually considered to be treatments of antithyroid drugs (ATDs), thyroidectomy or radio-iodine (131-I). However, the underlying cause may be the rapid correction of thyrotoxicosis (or relative hypothyroidism), which was usually neglected in clinical practice. PATIENT CONCERNS: This report describes a case of a 25-year-old female with typical symptoms and laboratory test results of Grave hyperthyroidism. The patient complained about fatigue and myalgia 7 weeks after receiving methimazole (MMI) treatment. Blood tests showed dramatically elevated serum CK level, although free triiodothyronine (FT3) and free thyroxine (FT4) level had returned to the normal reference range. MMI was; therefore, discontinued and the patient's muscular symptoms disappeared quickly with the normalization of CK level and the relapse of hyperthyroidism. Later she received 131-I treatment and suffered similar muscular symptoms when FT3 and FT4 decreased to the normal range. This time, her symptoms were quickly relieved by levothyroxine (L-T4) replacement treatment. DIAGNOSES: Myopathy induced by rapid correction of hyperthyroidism (or relative hypothyroidism). INTERVENTIONS: MMI was discontinued after the patient's first episode of muscular symptoms. And for her second episode of muscular injury after 131-I treatment, we initiated L-T4 supplementation. OUTCOMES: For the 2 episodes of muscular injury after ATDs or 131-I treatment, both of the interventions mentioned above brought a rapid relief of symptoms accompanied with normalization of CK level and restoration of thyroid hormone level. LESSONS: Myopathy can be caused by a rapid reduction of thyroid hormone during the treatment of hyperthyroidism. This relative hypothyroidism syndrome should be considered if patients make complaints about fatigue and myalgia, even when thyroid hormone level is within the normal range during the antithyroid treatments. Serum CK level and thyroid function should be closely monitored post antithyroid treatments. Reduction of ATD dosage or replacement of thyroid hormone is suggested to relieve muscular symptoms.


Subject(s)
Antithyroid Agents/adverse effects , Graves Disease/drug therapy , Methimazole/adverse effects , Myalgia/chemically induced , Adult , Creatine Kinase/blood , Female , Humans , Recurrence , Thyroxine/therapeutic use
20.
Molecules ; 24(24)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31835323

ABSTRACT

Inflammation is a common pathogenesis in many diseases. Salvia miltiorrhiza Bunge (Danshen), a traditional Chinese medicine, has been considered to have good anti-inflammatory effects. In the present study, we investigated the anti-inflammatory effect of diethyl blechnic (DB), a novel compound isolated from Danshen, and its possible mechanisms in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. The results showed that DB can inhibit the LPS-induced pro-inflammatory cytokines release of prostaglandin E2 (PGE2) and mRNA expression of TNF-α, IL-6, and IL-1ß. In addition, the results of the flow cytometry assay and the fluorometric intracellular ROS kit assay indicated that DB reduced the generation of ROS in LPS-stimualted RAW264.7 cells. DB reversed the LPS-induced loss of the mitochondrial membrane potential (MMP). Furthermore, DB suppressed the LPS-stimulated increased expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88) and phosphorylation of TAK1, PI3K, and AKT. DB promoted NF-E2-related factor 2 (Nrf2) into the nucleus, increased the expression of heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) and reduced the expression of Keap1. In summary, DB may inhibit LPS-induced inflammation, which mainly occurs through TLR4/MyD88 and oxidative stress signaling pathways in RAW264.7 cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Benzofurans/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Benzofurans/chemistry , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Molecular Structure , NF-kappa B/metabolism , Oxidative Stress/drug effects , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL