Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Nature ; 624(7991): 403-414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092914

ABSTRACT

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Subject(s)
Brain , Gene Expression Profiling , Neural Pathways , Neurons , Spinal Cord , Animals , Mice , Hypothalamus , Neurons/metabolism , Neuropeptides , Spinal Cord/cytology , Spinal Cord/metabolism , Brain/cytology , Brain/metabolism , Neurotransmitter Agents , Mesencephalon/cytology , Reticular Formation/cytology , Electrophysiology , Cerebellum/cytology , Cerebral Cortex/cytology
2.
Chem Biodivers ; 20(12): e202301454, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874779

ABSTRACT

Phytochemical investigation on the anti-inflammatory fraction extracted from the whole plant of Euphorbia helioscopia L. led to the isolation of three new ent-atisane diterpenoids (1-3) and five known analogues (4-8). The structures and absolute configurations of the new compounds were elucidated by comprehensive analysis of the NMR, MS, IR, ECD, and X-ray crystallography. It is worth mentioning that compound 3 belongs to a rare class of ent-atisane diterpenoid featuring a hydroxyl group at C-9. Bioactivity investigation showed that compounds 4, 7, and 8 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.


Subject(s)
Diterpenes , Euphorbia , Euphorbia/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Magnetic Resonance Spectroscopy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Structure
3.
Phytomedicine ; 118: 154915, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392674

ABSTRACT

OBJECTIVE: To study the effect of ShenKang Injection (SKI) on the kidneys of DKD rats and its effect on oxidative stress mediated by the Keap1/Nrf2/Ho-1 signaling pathway through network pharmacology and in vivo and in vitro experiments. METHODS: SKI drug targets were screened by TCMSP, DKD targets were screened by GenGards, OMIM, Drugbank, TTD, and Disgenet databases, and the two intersected for PPI network analysis and target prediction was performed by GO and KEGG. A total of 40 SD rats were randomly divided into 10 in the control group and 30 in the model group. After the model group was fed 8 W with high-sugar and high-fat diets, a DKD model was constructed by one-time intraperitoneal injection of streptozotocin (35 mg/kg). According to the weight, the model animals were randomly divided into three groups: 8 for model validation group, 8 for Irbesartan (25 mg/kg daily) group, and 8 for SKI group (5 ml/kg). Gavaged deionized water was given to the control group and the model validation group equally. The general conditions of the rats were observed, their body weights measured and their urine volumes recorded for 24 h. After the intervention of 16 W, serum was collected to detect Urea, Scr, blood lipids, and oxidative stress and lipid peroxidation indicators; Transmission electron microscopy, HE and Mallory staining were used to observe the pathological morphology of renal tissue. Immunohistochemistry and RT-PCR were used to detect the expression of Keap1, Nrf2, Ho-1, Gpx4 proteins and mRNA in rat kidney tissues. HK-2 cells were cultured in vitro and divided into: the control group, AGEs (200 µg/ml) group and AGEs + SKI group. The cell activity of the groups was detected using CCK-8 after 48 h of cell culture, and ROS were detected using fluorescent probes. Gpx4 expression was detected by immunofluorescence, while Keap1, Nrf2, Ho-1, and Gpx4 were detected by Western Blot. RESULTS: Network pharmacological analysis predicted that SKI may delay DKD kidney injury by affecting redox-related signaling pathways and mitigating AGEs-induced oxidative stress. In the animal experiment, compared with the model validation group, the general state of rats in the SKI group was improved, and 24-hour urine protein levels were significantly reduced, and the Scr in the serum was reduced. A decreasing trend was seen in Urea, and TC, TG, and LDL levels significantly decreased and the levels of ROS, LPO and MDA were significantly lowered. Pathological staining showed that renal interstitial fibrosis was significantly improved, and electron microscopy showed that foot process effacement was alleviated. Immunohistochemistry and RT-PCR showed decreased expression of Keap1 protein and mRNA in kidney tissues of the SKI group. Additionally, Nrf2, Ho-1, and Gpx4 proteins and mRNA were expressed significantly. In the cell experiment, after 48 h treatment with AGEs, ROS in HK-2 cells increased significantly and cell activity decreased significantly, while cell activity in AGEs + SKI group increased significantly and ROS decreased. The expression of Keap1 protein in HK-2 cells in the AGEs + SKI group decreased, while the expression of Nrf2, Ho-1 and Gpx4 proteins increased significantly. CONCLUSION: SKI can protect kidney function in DKD rats, delay DKD progression, inhibit AGEs-induced oxidative stress damage in HK-2 cells, and the mechanism of SKI to improve DKD may be achieved by activating the Keap1/Nrf2/Ho-1 signal transduction pathway.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Rats , Animals , Reactive Oxygen Species/metabolism , Diabetic Nephropathies/drug therapy , Rats, Sprague-Dawley , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Network Pharmacology , Oxidative Stress , Signal Transduction , Urea/pharmacology , Glycation End Products, Advanced/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 48(2): 321-328, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725221

ABSTRACT

Trimethylamine N-oxide(TMAO), a metabolite of gut microbiota, is closely associated with chronic kidney disease(CKD). It can aggravate the kidney injury and promote the occurrence of complications of CKD mainly by inducing renal fibroblast activation, vascular endothelial inflammation, macrophage foaming, platelet hyperreactivity, and inhibition of reverse cholesterol transport. Thus it is of great significance for clinical treatment of CKD to regulate circulating TMAO and alleviate its induced body damage. Currently, therapeutic strategies for TMAO regulation include dietary structure adjustment, lifestyle intervention, intestinal microflora regulation, and inhibition of intestinal trimethylamine synthesis and liver trimethylamine oxidation. Chinese medicinal herbs have the clinical advantage of multi-component and multi-target effects, and application of traditional Chinese medicine(TCM) to synergistically regulating TMAO and improving CKD via multiple pathways has broad prospects. This study systematically reviewed the clinical relevance and mechanism of TMAO in aggravating CKD renal function deterioration and complication progression. In addition, the effect and mechanism of TCM in improving TMAO-induced kidney injury, cardiovascular disease, hyperlipidemia, thrombosis and osteoporosis were summarized. The results provided a theoretical basis for TCM in attenuating gut microbiota-derived metabolite TMAO and improving CKD, as well as a basis and direction for in-depth clinical development and mechanism research in the future.


Subject(s)
Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Medicine, Chinese Traditional , Renal Insufficiency, Chronic/drug therapy
5.
Phytother Res ; 37(4): 1274-1292, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36420586

ABSTRACT

Trimethylamine N-oxide (TMAO) is associated with overall mortality in patients with chronic kidney disease (CKD). Previous findings suggest that P. frutescens (L.) can alleviate renal injury, but its effects and mechanisms underlying alleviation of TMAO-induced kidney damage remain unclear. In this study, a TMAO injury model, in vivo and in vitro, was established to clarify the effects and mechanisms of P. frutescens in alleviating TMAO-induced kidney injury. The results show that TMAO (60 mM/L) can induce the activation of apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK), thus aggravating downstream cell apoptosis in vitro. The study also found that P. frutescens aqueous extract (PFAE) (5 mg/mL) can inhibit TMAO-induced apoptosis by downregulating ASK1-JNK phosphorylation. In the in vivo experiments, it was demonstrated that TMAO can increase the levels of blood urea nitrogen and cystatin C, aggravating renal tubular epithelial apoptosis. The results also show that PFAE can reduce TMAO-induced renal damage by inhibiting ASK1-JNK phosphorylation in vivo. Our findings confirmed that P. frutescens can alleviate TMAO-induced renal tubule apoptosis by regulating ASK1-JNK phosphorylation, indicating that P. frutescens may be an effective treatment for alleviating TMAO damage in CKD.


Subject(s)
Perilla frutescens , Renal Insufficiency, Chronic , Humans , Phosphorylation , MAP Kinase Kinase Kinase 5 , Apoptosis/physiology
6.
Article in English | MEDLINE | ID: mdl-36212965

ABSTRACT

Chronic kidney disease (CKD) has become a global public health problem. Tubular epithelial cell injury plays a vital role in the progression and prognosis of CKD. Therapies to protect tubular cells is the key to delaying CKD progression. Our study found that verbena, a natural traditional Chinese herb, has a potential reno-protective role in kidney diseases. However, the detailed mechanism remains unknown. In the current study, we employed adriamycin (ADR)-induced renal tubular cell injury to mimic the conditions of tubular injury in vitro. Results showed that total aqueous exact of verbena (TAEV) ameliorated ADR-induced cell disruption, loss of cellular viability, and apoptosis via inhibition of ROS-ERK1/2-mediated activation of NLRP3 signal pathway, suggesting that TAEV serves as a promising renoprotective agent in delaying the progression of CKD, while ROS-ERK1/2-mediated NLRP3 signal pathway might be a novel target in treating kidney diseases.

7.
Front Pharmacol ; 13: 907980, 2022.
Article in English | MEDLINE | ID: mdl-36052125

ABSTRACT

Purpose: The incidence of uric acid (UA)-induced kidney injury is increasing owing to the high incidence of hyperuricemia in recent years. The flower of Abelmoschus manihot (Linneus) Medik is a traditional Chinese medicinal herb widely used in the treatment of some kidney diseases. In our previous study, we reported that the total extract of A. manihot L. flower (TEA) attenuated adriamycin-induced renal tubular cell injury. In this study, we aimed to evaluate the role of TEA in UA-induced tubular cell injury. Methods: Normal rat proximal epithelial NRK-52E cells were incubated with UA to mimic hyperuricemia conditions. The role of TEA in the renal tubular cells was also assessed. The cellular morphology was observed using phase-contrast microscopy, and cell viability was analyzed using the Cell Counting kit-8. Living and dead cells were stained using a Calcein-AM/PI double stain kit. The release of lactate dehydrogenase (LDH) was analyzed by LDH cytotoxicity Assay Kit. The expression of target proteins was analyzed using western blot analysis. Results: UA triggered NRK-52E cell injury, as evidenced by morphological changes, detachment of cells from the bottom, cell swelling, large bubbles blowing from cell membrane and loss of cell viability. UA increased release of LDH. UA induced the expression of p-ERK1/2 and the subsequent activation of caspase-8, caspase-3, and NLRP3 inflammasomes. Pyroptosis was elicited by UA after gasdermin E N-terminal (GSDME-NT) was cleaved from gasdermin E (GSDME). Z-DEVD-FMK, a caspase-3 inhibitor, suppressed the expression of both NLRP3 and GSDME-NT, but not that of caspase-8. INF39, an NLRP3 inhibitor, altered the expression of GSDME-NT expression, but not that caspase-3 and caspase-8. TEA alleviated UA-induced cell injury by suppressing ERK1/2/caspase-8/caspase-3/NLRP3/GSDME signaling. Conclusion: GSDME-mediated pyroptosis was involved in UA-induced renal tubular cell injury. This is the first study to report that TEA protects renal tubular epithelial cells against UA by inhibiting the ERK/1/2/caspase-8/caspase-3/NLRP3/GSDME pathway.

8.
Fitoterapia ; 162: 105296, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36087821

ABSTRACT

Four new diterpenoids (1-4), and 18 known ones were isolated from the roots of Euphorbia fischeriana Steud (Euphorbiaceae). These diterpenoids shared six skeleton types, including ent-atisane, kaurane, 3,4-secokaurane, lathyrane, 4,5-secoatisane and ingenane diterpenoids. The structures of the new diterpenoids were characterized by a combination of spectroscopic techniques and X-ray crystallography. Moreover, biological evaluation revealed that compounds (16S*)-atisan-3ß,16,17-triol (7), (16S*)-3ß,16,17,18-tetrahydroxykaurane (12) and (16S*)-3α-hydroxykauran-16,17-acetonide (15) showed inhibitory activity against the interferon regulatory factors (IRFs) involved pathway.


Subject(s)
Diterpenes, Kaurane , Diterpenes , Euphorbia , Diterpenes/chemistry , Diterpenes/pharmacology , Euphorbia/chemistry , Interferon Regulatory Factors/analysis , Molecular Structure , Plant Roots/chemistry
9.
Int J Immunopathol Pharmacol ; 36: 3946320221107239, 2022.
Article in English | MEDLINE | ID: mdl-35791093

ABSTRACT

Background: Osteoporosis (OP) is determined as a chronic systemic bone disorder to increase the susceptibility to fracture. Ginsenosides have been found the anti-osteoporotic activity of in vivo and in vitro. However, its mechanism remains unknown.Methods: The potential mechanism of ginsenosides in anti-osteoporotic activity was identified by using network phamacology analysis. The active compounds of ginsenosides and their targets associated to OP were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Drug Bank, Pharmmapper, and Cytoscape. The Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis target genes were performed in String, Phenopedia, DisGeNET database, and Metascape software. The protein to protein interaction were created by String database and Cytoscape software. The molecular docking was used to investigate the interactions between active coumpounds and potential targets by utilizing SwissDock tool, UCSF Chimera, and Pymol software. Results: A total of eight important active ingredients and 17 potential targets related to OP treatment were subjected to analyze. GO analysis showed the anti-osteoporosis targets of ginsenoside mainly play a role in the response to steroid hormone. KEGG enrichment analysis indicated that ginsenoside treats OP by osteoblast differentiation signal pathway. Lastly, the molecular docking outcomes indicated that ginsenoside rh2 had a good binding ability with four target proteins IL1B, TNF, IFNG, and NFKBIA. Conclusion: IL1B, TNF, IFNG, and NFKBIA are the most important targets and osteoblast differentiation is the most valuable signaling pathways in ginsenoside for the treatment of OP, which might be beneficial to elucidate the mechanism concerned to the action of ginsenoside and might supply a better understanding of its anti-OP effects.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Osteoporosis , Drugs, Chinese Herbal/therapeutic use , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Molecular Docking Simulation , Network Pharmacology , Osteoporosis/drug therapy , Protein Interaction Maps
10.
World J Clin Cases ; 10(10): 3232-3240, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35647137

ABSTRACT

BACKGROUND: IgA nephropathy (IgAN) is a common primary glomerular disease that leads to end-stage renal disease with poor therapy efficacy. Traditional Chinese medicine (TCM) is effective in the treatment of IgAN and has the potential to become an alternative treatment for IgAN. Professor Yan-Qin Zou is a nephropathy expert, a National Chinese Medicine Master, and an heir to the Menghe School of Medicine. CASE SUMMARY: A 28-year-old man had positive urinary protein and elevated serum creatinine (Scr) results and was diagnosed with IgAN 2-3 years prior to the outpatient department visit at our hospital in 2017. Professor Zou used the following methods to treat the patient: Invigorating the spleen and tonifying the kidney, removing dampness and clearing turbidity, quickening the blood and transforming stasis, and freeing vessels and regulating collaterals. She adjusted the prescription in accordance with the patient's symptoms. After 6 mo of treatment, the symptoms had resolved and serological indexes were also decreased [Scr from 288.5 to 188.6 µmol/L, blood urea nitrogen (BUN) from 10.9 to 9.5 mmol/L, serum uric acid (UA) from 612 to 503 µmol/L]. During follow-up, BUN, Scr, and UA levels remained stable. CONCLUSION: Professor Zou's therapeutic strategy to treat IgAN using TCM was efficacious and a good reference for application.

11.
J Environ Sci (China) ; 120: 115-124, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35623765

ABSTRACT

Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.


Subject(s)
Extracellular Polymeric Substance Matrix , Ferric Compounds , Ecosystem , Extracellular Polymeric Substance Matrix/metabolism , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Minerals/chemistry , Phosphates/chemistry , Phosphorus , Shewanella
12.
J Nucl Med ; 63(4): 556-559, 2022 04.
Article in English | MEDLINE | ID: mdl-34475235

ABSTRACT

This prospective nonrandomized, multicenter clinical trial was performed to investigate the efficacy and safety of 131I-labeled metuximab in adjuvant treatment of unresectable hepatocellular carcinoma. Methods: Patients were assigned to treatment with transcatheter arterial chemoembolization (TACE) combined with 131I-metuximab or TACE alone. The primary outcome was overall tumor recurrence. The secondary outcomes were safety and overall survival. Results: The median time to tumor recurrence was 6 mo in the TACE + 131I-metuximab group (n = 160) and 3 mo in the TACE group (n = 160) (hazard ratio, 0.55; 95% CI, 0.43-0.70; P < 0.001). The median overall survival was 28 mo in the TACE + 131I-metuximab group and 19 mo in the TACE group (hazard ratio, 0.62; 95% CI, 0.47-0.82; P = 0.001). Conclusion: TACE + 131I-metuximab showed a greater antirecurrence benefit, significantly improved the 5-y survival of patients with advanced hepatocellular carcinoma, and was well tolerated by patients.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Antibodies, Monoclonal , Carcinoma, Hepatocellular/pathology , Chemoembolization, Therapeutic/adverse effects , Combined Modality Therapy , Hepatic Artery/pathology , Humans , Iodine Radioisotopes , Liver Neoplasms/pathology , Neoplasm Recurrence, Local , Prospective Studies , Treatment Outcome
13.
Nat Prod Res ; 36(19): 4929-4935, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33858273

ABSTRACT

The ethanol extract of the roots of Codonopsis pilosula was subjected to chromatographic fractionation, which result in the isolation and characterization of two new aromatic derivatives 2,3-dihydroxypropyl 2,4-dihydroxy-3,6-dimethylbenzoate (1) and 2-oxopropyl 3-hydroxy-4-methoxybenzoate (2), along with three known compounds pilosulinene A (3), pollenfuran B (4) and (+)-pinoresinol (5). Their structures were demonstrated by HRESIMS and spectroscopic methods including NMR and IR. It is worth noting that compound 4 was isolated for the first time from the genus Codonopsis. The potential hypoglycemic properties of compounds 2-5 were evaluated by measuring their α-glucosidase inhibitory effects. As a result, compounds 2 and 3 showed weak α-glucosidase inhibitory activities with IC50 values of 154.8 ± 11.0 µM and 24.0 ± 2.2 µM, respectively.[Formula: see text].


Subject(s)
Codonopsis , Codonopsis/chemistry , Ethanol , Hypoglycemic Agents , Plant Extracts/chemistry , Plant Extracts/pharmacology , Triterpenes , alpha-Glucosidases
14.
Front Pharmacol ; 12: 717744, 2021.
Article in English | MEDLINE | ID: mdl-34899287

ABSTRACT

Chronic kidney disease (CKD) is a chronic progressive disease that seriously threatens human health. Some patients will continue to progress into the CKD stage 3-5 (also called chronic renal failure), which is mainly manifested by a decline in renal function and multi-system damage. Perilla frutescens (L.) Britton. (Lamiaceae) is one of the most widely used traditional Chinese medicine (TCM) herbs in CKD, especially in CKD stage 3-5. But its active components and mechanisms are still unclear. In this study, we used network pharmacology to analyze the active components of P. frutescens and the main therapeutic targets for intervention in CKD stage 3-5. Then, the key components were selected for enrichment analysis and identified by high performance liquid chromatograph (HPLC). Finally, we verified the critical components through molecular docking, and in vitro experiments. The results show that 19 main active components of P. frutescens were screened, and 108 targets were intersected with CKD stage 3-5. The PPI network was constructed and found that the core nodes AKT1, TP53, IL6, TNF, and MAPK1 may be key therapeutic targets. Enrichment analysis shows that related targets may be involved in regulating various biological functions, and play a therapeutic role in CKD stage 3-5 by regulating apoptosis, T cell receptor, and PI3K-AKT signaling pathways. Molecular docking indicates that the key active components were well docked with its corresponding targets. Five active components were identified and quantified by HPLC. According to the results, luteolin was selected as the critical component for further verification. In vitro experiments have shown that luteolin can effectively alleviate adriamycin (ADR)-induced renal tubular apoptosis and suppress AKT and p53 phosphorylation. The effects of luteolin to reduce apoptosis may be mediated by inhibiting oxidative stress and downregulating the mitogen-activated protein kinase (MAPK) and p53 pathways. In general, we screened and analyzed the possible active components, therapeutic targets and pathways of P. frutescens for treating CKD. Our findings revealed that luteolin can reduce renal tubular epithelial cell apoptosis and may be the critical component of P. frutescens in the treatment of CKD. It provides references and direction for further research.

15.
J Inflamm Res ; 14: 6601-6618, 2021.
Article in English | MEDLINE | ID: mdl-34908861

ABSTRACT

PURPOSE: Proteinuria is an independent risk factor of chronic kidney disease (CKD). Albumin-induced tubulointerstitial inflammation and epithelial-mesenchymal transition (EMT) via the activation of NLRP3 inflammasome is a potential therapeutic target for CKD. Suyin Detoxification Granule (SDG) improves proteinuria and postpones renal failure. However, the underlying mechanism is still unknown. METHODS: Firstly, the rat model of renal failure was established using intragastric administration of adenine. Renal function, proteinuria, inflammatory indicators in serum, and renal pathology were assessed, and renal immunohistochemical staining of NLRP3 inflammasomes was performed after intervention with low and high concentrations of SDG. Secondly, the model of renal tubular epithelial HK-2 cells was established using albumin in vitro, and the cell viability, EMT phenotype, and the expression of proteins in the NLRP3 inflammasome signaling pathway were measured after the freeze-dried powder of Suyin Detoxification Prescription (SDP) and CY-09, which is a selective and direct NLRP3 inhibitor, were co-incubated with albumin. ATP, SOD, mitochondrial membrane potential, and ROS were further measured in vitro, and changes in the mitochondrial function after SDP intervention were observed. The mitochondrial antiviral signaling protein (MAVS) was knocked down using siRNA, and the interaction between MAVS and NLRP3 was verified using Western blotting, polymerase chain reaction (PCR), and immunofluorescence. RESULTS: SDG improved renal function and proteinuria, alleviated renal fibrosis, and reduced serum inflammation and the expression of the components of the NLRP3 inflammasome in the kidney. In vitro, SDP and CY-09 enhanced cell viability after injury with albumin and inhibited pyroptosis induced by the NLRP3 inflammatory signaling pathway and expression of proteins involved in EMT. It was further found that SDP alleviated the mitochondrial dysfunction caused by albumin. The knockdown of MAVS reduced the expression of NLRP3 pathway proteins and their mRNA levels and also weakened the co-localization of NLRP3, thus, reducing cell pyroptosis. CONCLUSION: SDP protected renal tubular epithelial cells from cell pyroptosis and EMT by regulating the albumin-induced mitochondrial dysfunction/ MAVS/ NLRP3-ASC-caspase-1 inflammasome signaling pathway.

16.
J Nat Prod ; 84(8): 2111-2120, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34197108

ABSTRACT

A bioactivity-guided study on the leaves of Picrasma javanica led to the isolation of 19 quassinoids, including 13 new compounds. The structures of the new compounds were elucidated by a combination of spectroscopic data analysis, X-ray crystallography studies, and electronic circular dichroism (ECD) data interpretation. Compounds 1-7 are rare examples of quassinoids with a keto carbonyl group at C-12. The biological activities of 11 of the more abundant isolates were evaluated against five phytopathogenic fungi in vitro, and several of them including 6 and 15 showed moderate inhibitory effects that were comparative to those of the positive control, carbendazim. In addition, the preliminary structure-activity relationships (SARs) of these quassinoids were also investigated.


Subject(s)
Fungi/drug effects , Fungicides, Industrial/pharmacology , Picrasma/chemistry , Quassins/pharmacology , China , Fungi/pathogenicity , Fungicides, Industrial/chemistry , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Picrasma/microbiology , Plant Extracts/chemistry , Plant Leaves/chemistry , Quassins/chemistry , Structure-Activity Relationship
17.
J Nat Prod ; 84(8): 2094-2103, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34292737

ABSTRACT

Nonsmall cell lung cancer (NSCLC) has been a fatal and refractory disease worldwide. Novel therapeutic developments based on fundamental investigations of anticancer mechanisms underlie substantial foundations to win the fight against cancer diseases. In this study, we isolated a natural product fusaricide (FCD) from an endophytic fungus of Lycium barbarum, identified as Epicoccum sp. For the first time, we discovered that FCD potently inhibited proliferation in a variety of human NSCLC cell lines, with relatively less toxicity to normal cells. Our study exhibited that FCD induced apoptosis, caused DNA damage and cell cycle arrest in G0/G1 phase, and activated caspase-3 as well as other apoptosis-related factors in human NSCLC NCI-H460 cells. FCD was proven to be an iron chelator that actively decreased levels of cellular labile iron pool in NCI-H460 cells in our study. FeCl3 supplement reversed FCD-induced apoptosis. The upregulation of transferrin receptor 1 (TfR1) and downregulation of ferritin heavy chain (FTH) expression were observed after FCD treatment. In summary, our study highlighted the potential anticancer effects of FCD against human NSCLCs and demonstrated that the FCD-mediated apoptosis depended on binding to intracellular iron.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzopyrans/pharmacology , Caspase 3/metabolism , Iron Chelating Agents/pharmacology , Pyridones/pharmacology , Antigens, CD/metabolism , Apoferritins/metabolism , Ascomycota/chemistry , Carcinoma, Non-Small-Cell Lung , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , China , Endophytes/chemistry , Humans , Lung Neoplasms , Lycium/microbiology , Molecular Structure , Receptors, Transferrin/metabolism
18.
Aging (Albany NY) ; 13(24): 26003-26021, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34986125

ABSTRACT

CONTEXT: Baiying Qinghou as a traditional Chinese medicine decoction shows anticancer property on laryngeal squamous cell carcinoma. However, little is known about the precise mechanism of Baiying Qinghou detection against laryngeal squamous cell carcinoma. OBJECTIVE: This study was aimed to explore potential mechanism of therapeutic actions of Baiying Qinghou decoction on laryngeal squamous cell carcinoma. MATERIALS AND METHODS: The active chemical components of Baiying Qinghou decoction were predicted, followed by integrated analysis of network pharmacology and molecular docking approach. The network pharmacology approach included target protein prediction, protein-protein interaction network construction and functional enrichment analysis. RESULTS: Sitosterol and quercetin were predicted to be the overlapped active ingredients among three Chinese herbs of Baiying Qinghou decoction. The target proteins were closely associated with response to chemical, response to drug related biological process and cancer related pathways such as PI3K-Akt signaling, HIF-1 signaling and Estrogen signaling pathway. The target proteins of TP53, EGFR, PTGS2, NOS3 and IL1B as the key nodes in PPI network were cross-validated, among which EGFR, IL1B, NOS3 and TP53 were significantly correlated with the prognosis of patients with laryngeal squamous cell carcinoma. Finally, the binding modes of EGFR, IL1B, NOS3 and TP53 with quercetin were visualized. DISCUSSION AND CONCLUSION: Quercetin of Baiying Qinghou decoction showed therapeutic effect against laryngeal squamous cell carcinoma by regulating TP53, EGFR, NOS3 and IL1B involved with drug resistance and PI3K-AKT signaling pathway. TP53, EGFR, NOS3 and IL1B may be the candidate targets for the treatment of laryngeal squamous cell carcinoma.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Laryngeal Neoplasms/drug therapy , Network Pharmacology , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Antioxidants/administration & dosage , Drugs, Chinese Herbal/pharmacology , Humans , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/drug effects , Protein Interaction Maps , Quercetin/administration & dosage
19.
Article in English | MEDLINE | ID: mdl-33144869

ABSTRACT

BACKGROUND: It is generally considered that traditional Chinese medicine (TCM) therapy postpones the progression of some chronic kidney diseases (CKDs). Chinese medicine herbs are widely applied in TCM therapy. We aimed to evaluate clinical efficacy and safety of Chinese herbal formula granules in patients with CKD stage 3 through a prospective randomized controlled study. METHODS: A total of 343 participants with CKD stage 3 were recruited from 9 hospitals in Jiangsu Province between April 2014 and October 2016. Participants were randomly assigned to a treatment or control group. Patients in the treatment group orally took Chinese herbal formula granules twice a day, while controls received placebo granules. The duration of intervention was 24 weeks. Primary outcomes were 24-hour proteinuria, serum creatinine, and eGFR, which were measured every 4 weeks. RESULTS: There was no statistical difference in 24-hour proteinuria between the two groups (0.97 ± 1.14 g/d vs. 0.97 ± 1.25 g/d). Patients in the treatment group had significantly lower serum creatinine level (130.78 ± 32.55 µmol/L versus 149.12 ± 41.27 µmol/L) and significantly higher eGFR level (55.74 ± 50.82 ml/min/1.73·m2 versus 44.46 ± 12.60 ml/min/1.73·m2) than those in the control group (P < 0.05). There was no significant difference between two groups in the incidence of adverse events. CONCLUSION: The treatment adopting Chinese herbal formula granules for 24 weeks improved kidney function of patients with CKD stage 3.

20.
Article in English | MEDLINE | ID: mdl-32419800

ABSTRACT

OBJECTIVE: To systematically evaluate the efficacy and safety of tanshinone for chronic kidney disease (CKD). METHODS: Randomized controlled trials (RCTs) on the treatment of CKD using tanshinone were searched using 4 Chinese databases (China National Knowledge Infrastructure (CNKI), Value In Paper (VIP), Wanfang, and Chinese Biology Medicine (CBM)) and 3 English databases (PubMed, Cochrane Library, and Excerpta Medica Database (Embase)). The results included data on blood urine nitrogen (BUN), serum creatinine (Scr), glomerular filtration rate (GFR), 24 h urine protein, microalbuminuria (mALB), ß2-macroglobulin (ß2-MG), cystatin C (CysC), and safety events. The data were analyzed using Revman 5.3 and Stata 12.0 software. RESULTS: Twenty-one studies were entered into this meta-analysis, which involved 1857 patients including 954 cases from the tanshinone treatment group and 903 cases from the control group. BUN levels in the tanshinone treatment group were significantly reduced compared with the control (standardized mean difference (SMD) = -0.65, 95% confidence interval (CI): -0.81 to -0.49, p < 0.01). In addition, subgroup analysis indicated that tanshinone had a significant effect in reducing Scr levels at 14, 21, and 28 days. Scr levels in the tanshinone treatment group were significantly reduced compared with the control group (SMD = -1.40, 95% CI: -2.09 to -0.71, p < 0.01); subgroup analysis based on treatment time also yielded the same results. GFR in the tanshinone treatment group was better than that in the control group (SMD = 0.83, 95% CI: 0.59 to 1.07, p < 0.01). In terms of urine protein levels, 24 h urine protein level, mALB, and ß2-MG of CKD patients were reduced to some degree compared with controls, and CysC levels in the tanshinone treatment group were also significantly reduced compared with the control group (SMD = -0.24, 95% CI: -0.44 to -0.03, p < 0.05). Safety in the tanshinone treatment group did not differ significantly from that of the control group (risk ratio (RR) = 7.78, 95% CI: 0.99 to 61.05, p > 0.05). CONCLUSION: This meta-analysis showed that tanshinone could control urine protein level in CKD patients, improve kidney function, and delay the evolution of CKD without significant side effects. However, the results were limited and should be interpreted with caution because of the low quality of the included studies. In the future, more rigorous clinical trials need to be conducted to provide sufficient and accurate evidence.

SELECTION OF CITATIONS
SEARCH DETAIL