Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123922, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38295589

ABSTRACT

The fruit of Crataegus sp. is known as "Shanzha (SZ)" in China and is widely used in the food, beverage, and traditional Chinese medicine (TCM) industries. SZ usually requires thermal processing to reduce the irritation of its acidity to the gastric mucosa. Different processed products of SZ resulting from thermal processing have different or even opposite functions in clinical applications. In addition, 5-hydroxymethylfurfural (5-HMF) intermediates produced during thermal processing are carcinogenic to humans. Therefore, the aim of this study was to explore a rapid and accurate method by Fourier transform infrared spectroscopy (FT-IR) for the identification of different processed products and the determination of 5-HMF in extracts. In qualitative identification, a three-stage infrared spectroscopy identification method (raw spectra, the second derivative spectra, and two-dimensional correlation (2DCOS) spectra) was developed to distinguish different processed products of SZ step by step. In quantitative determination, partial least squares regression combined with different variable selection methods, especially the 2DCOS method, was applied to determine the 5-HMF content. The results show that temperature-induced 2DCOS synchronous spectra can effectively identify different processed products of SZ by shape, intensity, and position of auto-peaks or cross-peaks, and the variables selected by power spectra from concentration-induced 2DCOS synchronous spectra have better prediction ability for 5-HMF compared to full variables. The above results demonstrate that 2D-COS analysis is a potential tool in qualitative and quantitative analysis, which can improve sample identification accuracy and determination capabilities. This study not only establishes a rapid and accurate method for the identification of different processed products but also provides a practical reference for food safety and the efficient use of TCM.


Subject(s)
Crataegus , Fruit , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectrophotometry, Infrared/methods , Medicine, Chinese Traditional
2.
Front Pharmacol ; 13: 899038, 2022.
Article in English | MEDLINE | ID: mdl-35677447

ABSTRACT

Xinkeshu tablets (XKST), a traditional Chinese patent medicine (CPM), have served in the clinical treatment of cardiovascular diseases (CVDs) for decades. However, its pharmacodyamic material basis was still unclear, and the holistic quality control has not been well established due to the lack of systematic research on the quality markers. In this experiment, the heart rate recovery rate of a zebrafish larva was used to evaluate the traditional pharmacological effect of XKST i.e., antiarrhythmic effect. The HPLC fingerprints of 16 batches of XKST samples were obtained, and antiarrhythmic components of XKST were identified by establishing the spectrum-effect relationship between HPLC fingerprints and heart rate recovery rate of zebrafish larva with orthogonal signal correction and partial least squares regression (OSC-PLSR) analysis. The anticardiovascular disease components of XKST were identified by mapping the targets related to CVDs in network pharmacology. The compounds of XKST absorbed and exposed in vivo were identified by ultra-high performance liquid chromatography Q-Exactive high-resolution mass spectrometry (UHPLC-Q-Exactive HRMS). Based on the earlier studies, combined with five principles for identifying quality markers and verified by a zebrafish arrhythmia model, danshensu, salvianolic acid A, salvianolic acid B, daidzein, and puerarin were identified as quality markers of XKST. In total, 16 batches of XKST samples were further quantified with the method established in this study. Our study laid the foundation for the quality control of XKST. The integrated strategy used in the study of XKST could be applied for the identification and quantification of quality markers of other CPMs as well.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121317, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35537260

ABSTRACT

The traditional Chinese medicine (TCM) extraction process is a complicated dynamic system with many variables and disturbance. Therefore, multi critical quality attributes (CQAs) monitoring is of great significance to understand the whole process. Spectroscopy is a powerful process analytical tool used for process understanding. However, single senor sometimes could not provide comprehensive information. Sensor fusion is a very practical method to overcome this deficiency. In this study, the extraction process of Xiao'er Xiaoji Zhike Oral Liquid (XXZOL) was carried out in pilot scale, where near infrared (NIR) spectroscopy and mid infrared (MIR) spectroscopy were collected to determine the concentrations of seven CQAs (synephrine, arecoline, chlorogenic acid, forsythoside A, naringin, hesperidin and neohesperidin) during extraction process. Based on fused data blocks, fusion partial least squares (PLS) models were established. Two fusion data blocks are obtained from the concatenation of original spectra (low-level data fusion) and the concatenation of characteristic variables based on band selection (mid-level data fusion) respectively. The results indicated that for all seven analytes, the mid-level data fusion models were superior to the single spectral models, with the prediction performance significantly improved. Specifically, the coefficients of determination (Rp2 and Rt2) of NIR, MIR and fusion quantitative models were all higher than 0.95. The relative standard errors of prediction (RSEP) values were all within 10%, except for models of neohesperidin, which were 10.76%, 12.39%, 12.05%, 10.03% for NIR, MIR, low-level and mid-level models respectively. These results demonstrate that it is feasible to monitor the extraction process of Xiao'er Xiaoji Zhike Oral Liquid more accurately and rapidly by fusing NIR and MIR spectroscopy, and the proposed approach also has vital and valuable reference value for the rapid monitoring of the mixed decoction process of other TCM.


Subject(s)
Drugs, Chinese Herbal , Spectroscopy, Near-Infrared , China , Chlorogenic Acid , Drugs, Chinese Herbal/chemistry , Least-Squares Analysis , Medicine, Chinese Traditional , Spectroscopy, Near-Infrared/methods
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118854, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32920500

ABSTRACT

Extraction process is not only a critical manufacturing unit but also the initial process of various extracts and preparations. Taking the most extensive Chinese herbal medicine Danshen (Salvia miltziorrhiza Bge) as an example, salvianolic acid B (Sal B) is its main active pharmaceutical ingredient but lacks accurate characterization of the extraction process. As one of process analytical technologies, near-infrared spectroscopy (NIRS) technology has been widely applied for monitoring pharmaceutical extraction process. In most past studies, water spectral information is often eliminated due to its high absorption. However, this study proposed a method of using water spectrum to understand the whole extraction process and to quickly determine the content of Sal B. Principal component analysis (PCA) was first utilized to investigate the whole extraction process, then the reconstructed spectrum based on PCA was established and analyzed by Aquaphotomics, and finally the partial least squares regression (PLSR) quantitative model of Sal B was established. PCA and Aquaphotomics results showed the whole extraction process could be considered as a dynamic change from structure breaker to structure maker, and the dominance of highly H-bonded water structures increases with the extraction time. Also, the Sal B quantitative model with water spectrum showed higher accuracy and stability than other methods, which parameters (RMSEC, RMSECV, RMSEP, R2c, R2cv, R2p, RPD) were 0.2408 mg/mL, 0.2939 mg/mL, 0.2584 mg/mL, 0.9536, 0.9300, 0.9494, 4.6298, respectively, and the paired t-test showed that Sal B content measured by NIR and HPLC methods had no significant differences (p > 0.05). In conclusion, all result indicated that water can be used as a probe to understand the traditional Chinese medicine extraction process with NIRS.


Subject(s)
Drugs, Chinese Herbal , Salvia miltiorrhiza , Medicine, Chinese Traditional , Spectroscopy, Near-Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL