Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Phytomedicine ; 126: 155470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417242

ABSTRACT

BACKGROUND: Asthma affects 3% of the global population, leading to over 0.25 million deaths. Due to its complexity, asthma is difficult to cure or prevent, and current therapies have limitations. This has led to a growing demand for alternative asthma treatments. We found rosmarinic acid (RosA) as a potential new drug candidate from natural medicine. However, RosA has poor bioavailability and remains mainly in the gastrointestinal tract after oral administration, suggesting the involvement of gut microbiota in its bioactivity. PURPOSE: To investigate the mechanism of RosA in alleviating allergic asthma by gut-lung axis. METHODS: We used 16S rRNA gene sequencing and metabolites analysis to investigate RosA's modulation of gut microbiota. Techniques of molecular biology and metabolomics were employed to study the pharmacological mechanism of RosA. Cohousing was used to confirm the involvement of gut microbiota in RosA-induced improvement of allergic asthma. RESULTS: RosA decreased cholate levels from spore-forming bacteria, leading to reduced 5-hydroxytryptamine (5-HT) synthesis, bronchoconstriction, vasodilation, and inflammatory cell infiltration. It also increased short-chain fatty acids (SCFAs) levels, facilitating the expression of intestinal tight junction proteins to promote intestinal integrity. SCFAs upregulated intestinal monocarboxylate transporters (MCTs), thereby improving their systemic delivery to reduce Th2/ILC2 mediated inflammatory response and suppress eosinophil influx and mucus production in lung. Additionally, RosA inhibited lipopolysaccharide (LPS) production and translocation, leading to reduced TLR4-NFκB mediated pulmonary inflammation and oxidative stress. CONCLUSIONS: The anti-asthmatic mechanism of oral RosA is primarily driven by modulation of gut microbiota-derived 5-HT, SCFAs, and LPS, achieving a combined synergistic effect. RosA is a safe, effective, and reliable drug candidate that could potentially replace glucocorticoids for asthma treatment.


Subject(s)
Asthma , Rosmarinic Acid , Humans , Immunity, Innate , RNA, Ribosomal, 16S/genetics , Lipopolysaccharides , Serotonin , Lymphocytes , Asthma/drug therapy , Asthma/metabolism , Lung/metabolism , Fatty Acids, Volatile/metabolism
2.
J Sci Food Agric ; 104(5): 2832-2841, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38018634

ABSTRACT

BACKGROUND: Folic acid and vitamin B12 (FV), being B vitamins, not only facilitate the remethylation of homocysteine (Hcy) but also contribute to embryonic development. This study aimed to assess the impact of FV supplementation during late pregnancy on sows' reproductive performance, amino acid metabolism, placental angiogenesis, and related parameters. Twenty primiparous sows at day 60 of gestation were randomly allocated to two groups: a basal diet (CON) group and a group receiving a basal diet supplemented with folic acid at 20 ppm and vitamin B12 at 125 ppb. RESULTS: The findings revealed that dietary FV supplementation significantly reduced the incidence of intrauterine growth retardation compared to the CON group (P < 0.05). Furthermore, it led to a decrease in the Hcy levels in umbilical cord serum (P < 0.05) and activation of the placental mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway (P < 0.05). Additionally, FV supplementation lowered placental malondialdehyde levels (P < 0.05) and increased the expression of placental thioredoxin (P = 0.05). Moreover, maternal FV supplementation notably elevated placental vascular density (P < 0.05) and the expression of sodium-coupled neutral amino acid transporter 2 (SNAT2) (P < 0.05), as well as amino acid concentrations in umbilical cord blood (P < 0.05). CONCLUSION: Maternal FV supplementation during medium to late gestation reduced Hcy levels in umbilical cord blood and positively impacted fetal development. This improvement was closely associated with increased placental antioxidant capacity and vascular density, as well as activation of the placental mTORC1-SNAT2 signaling pathway. © 2023 Society of Chemical Industry.


Subject(s)
Folic Acid , Vitamin B Complex , Pregnancy , Female , Animals , Swine , Folic Acid/metabolism , Antioxidants/metabolism , Vitamin B 12 , Placenta/metabolism , Angiogenesis , Dietary Supplements , Amino Acids/metabolism , Fetal Development , Mechanistic Target of Rapamycin Complex 1/metabolism
3.
Biomed Pharmacother ; 163: 114754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094549

ABSTRACT

Metformin (MTF) and berberine (BBR) share several therapeutic benefits in treating metabolic-related disorders. However, as the two agents have very different chemical structure and bioavailability in oral route, the goal of this study is to learn their characteristics in treating metabolic disorders. The therapeutic efficacy of BBR and MTF was systemically investigated in the high fat diet feeding hamsters and/or ApoE(-/-) mice; in parallel, gut microbiota related mechanisms were studied for both agents. We discovered that, although both two drugs had almost identical effects on reducing fatty liver, inflammation and atherosclerosis, BBR appeared to be superior over MTF in alleviating hyperlipidemia and obesity, but MTF was more effective than BBR for the control of blood glucose. Association analysis revealed that the modulation of intestinal microenvironment played a crucial role in the pharmacodynamics of both drugs, in which their respective superiority on the regulation of gut microbiota composition and intestinal bile acids might contribute to their own merits on lowering glucose or lipids. This study shows that BBR may be a good alternative for MTF in treating diabetic patients, especially for those complicated with dyslipidemia and obesity.


Subject(s)
Berberine , Hyperlipidemias , Metformin , Cricetinae , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Berberine/pharmacology , Berberine/therapeutic use , Obesity/drug therapy , Hyperlipidemias/drug therapy , Lipids/therapeutic use
4.
J Ethnopharmacol ; 306: 116158, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36638854

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY: The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS: The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS: We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS: Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.


Subject(s)
Brain Ischemia , Microbiota , Rats , Animals , Brain-Gut Axis , Phosphatidylinositol 3-Kinases , Fatty Acids, Volatile/metabolism , Cerebral Infarction
5.
Front Pharmacol ; 13: 851508, 2022.
Article in English | MEDLINE | ID: mdl-35620295

ABSTRACT

Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are "direct efficacy", including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and "background efficacy", including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30-50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with "Jun", "Chen", "Zuo", and "Shi" properties. In dCloud, "Jun" drug acts directly on the major symptom of the disease; "Chen" drug generates major background effects; "Zuo" drug has salutary and supportive functions; and "Shi" drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.

6.
J Diabetes Res ; 2019: 3872182, 2019.
Article in English | MEDLINE | ID: mdl-31687407

ABSTRACT

OBJECTIVE: The present study was designed to determine whether konjac and inulin extracts or their combination, konjac-inulin (KI) composition, as diet supplementary, can exert beneficial effects against type 1 diabetes and type 2 diabetes using animal models. METHODS: A total of 60 diabetic (type 1) rats induced by streptozotocin (STZ) were randomly assigned to five groups: vehicle control (STZ group), KI combination at low dose group (KI-L group), KI combination at medium dose group (KI-M group), KI combination at high dose group (KI-H group), konjac extract group (konjac group), and inulin extract group (inulin group). A sham group (without STZ) was also included. Levels of blood glucose were monitored at each week. After continuous treatment of each diet for 24 days, a glucose tolerance test was performed. After 28 days of treatment, plasma biochemical indicators including glycated serum proteins, total cholesterol, and triglycerides were measured and immunohistochemistry staining of the rat pancreas was performed, to study the insulin expressions. Type 2 diabetes was developed in db/db mice. A total of 28 db/db mice were divided into 4 groups: vehicle control (db/db group), KI composition group (KI group), konjac extract group (konjac group), and inulin extract group (inulin group). A wild-type control group (wild-type group) for db/db mice was also included. Levels of blood glucose, body weight, and blood triglycerides were monitored at each week. RESULTS: Daily use of the KI composition significantly decreased levels of blood glucose and blood triglycerides, as well as improved the insulin production in islets or reduced development of obesity in STZ-induced diabetic rats or in db/db mice. Such effects from KI composition were better than single ingredient of konjac or inulin extract. CONCLUSION: The results of this study suggest that daily use of KI composition has a protective role on type 1 and 2 diabetes and provided experimental basis for further development of KI composition as a food supplement for diabetic or diabetic high-risk population.


Subject(s)
Amorphophallus , Blood Glucose , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Insulin/blood , Inulin/therapeutic use , Plant Extracts/therapeutic use , Animals , Cholesterol/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/metabolism , Inulin/pharmacology , Male , Mice , Pancreas/drug effects , Pancreas/metabolism , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Triglycerides/blood
7.
Scand J Pain ; 7(1): 9-14, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-29911599

ABSTRACT

Background and aims We have previously reported that sinomenine, an alkaloid isolated from the root of the plant Sinomenium acutum, had antinociceptive effect in rodent models of acute inflammatory or neuropathic pain. As a traditional medicine, sinomenine is used in China to treat rheumatoid arthritis (RA). Methods In the present study, we evaluated the potential antinociceptive effect of sinomenine in a mouse model of RA, collagen type II antibody (CII Ab) induced arthritis (CAIA) after acute and chronic administration. Results As single administration, sinomenine at 40 or 80 mg/kg significantly reduced mechanical hypersensitivity both at the time of peak joint inflammation (days 11-19 after CII Ab injection) or during the post-inflammatory phase (days 35-54). No tolerance to the effect of 80 mg/kg sinomenine was observed during repeated injection twice a day for 5 days from day 11 to day 19 or from day 49 to day 53 after CII Ab injection in CAIA mice. Conclusions We have shown that sinomenine is effective in alleviating localized and spread hypersensitivities in CAIA mice both during acute inflammation and in post-inflammatory phase. Further, repeated sinomenine administration has elevated the baseline mechanical threshold without producing tolerance. Implications Sinomenine may be clinically useful to treat chronic pain in RA, including wide-spread pain which appears to be a difficult clinical problem despite the improvement in the acute treatment of RA by disease modifying agents.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Hyperalgesia/drug therapy , Morphinans/pharmacology , Animals , Arthritis, Rheumatoid/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Hyperalgesia/physiopathology , Mice, Inbred CBA , Time Factors , Touch
9.
Eur J Pharmacol ; 721(1-3): 5-11, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24120369

ABSTRACT

Sinomenine is an alkaloid originally isolated from the root of the plant Sinomenium acutum. It is used in traditional medicine in China to treat rheumatic arthritis. In the present study, we evaluated the potential antinociceptive effects of sinomenine in rodents with nociceptive, inflammatory and neuropathic pain. In normal rats and mice, systemic sinomenine produced moderate antinociceptive effect in the hot plate and tail flick tests. Sinomenine also exerted analgesic effects on mechanical and heat hypersensitivity in mice after carrageenan induced inflammation. Finally, sinomenine effectively alleviated mechanical and cold allodynia in rats and mice after injury to peripheral nerve or spinal cord. The analgesic effect of sinomenine is not associated with side effects and is not reversed by the opioid receptor antagonist naloxone. Our results showed that sinomenine has a wide spectrum analgesic effect in rodent models of nociceptive, inflammatory and neuropathic pain.


Subject(s)
Analgesics/pharmacology , Morphinans/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/injuries , Spinal Cord Injuries/drug therapy , Analgesics/therapeutic use , Animals , Behavior, Animal/drug effects , Carrageenan/adverse effects , Female , Hyperalgesia/complications , Hyperalgesia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Morphinans/therapeutic use , Neuralgia/complications , Neuralgia/drug therapy , Nociception/drug effects , Rats , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL