Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Photobiomodul Photomed Laser Surg ; 41(7): 312-319, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37379488

ABSTRACT

Objective: To examine the integrated dose-effect relationship of near-infrared (NIR) light-emitting diode (LED) light therapy in promoting bone defect repair in the rat model for osteoporosis (OP). Background: Low-intensity laser therapy has been shown to promote bone regeneration in OP rats. However, its integrated dose-effect relationship is not clear. Methods: Twenty-week-old male Sprague-Dawley rats were randomly assigned to 11 groups: (1) no-treatment control group (C group), (2) tail suspension (TS)-induced disuse OP experimental group (TS-OP group), and (3) OP rats with LED light treatment at nine dosages (L1-L9 groups). The tail of the rat was tied and suspended on the beam of the cage to suspend their hind limbs to induce bone loss for 4 or 7 weeks. The rats were then released and returned to their regular positions. An NIR LED at 810 nm was used on the bilateral hind limbs daily for 4 weeks. The C group rats were not given any treatment. The TS-OP group rats were subjected to identical procedures with L groups, with the exception that the light power was not turned on. After the experiment, the dual-energy X-rays or the microcomputed tomography scan analysis was performed to evaluate bone tissue status. Data analysis was done using SPSS and the health scale. Results: The trabecular thickness, trabecular number, bone volume/total volume, and connectivity density of cancellous bone and the biomechanical properties of femur in light groups were significantly increased compared with the TS-OP group, while the trabecular separation and structure model index were significantly decreased. Conclusions: NIR LED light therapy may promote trabecular bone repair of TS-OP rats. Light intensity influences photobiomodulation. In our dose levels, the greater the light intensity, usually the more effective.


Subject(s)
Bone Density , Osteoporosis , Rats , Male , Animals , Rats, Sprague-Dawley , X-Ray Microtomography , Osteoporosis/radiotherapy , Osteoporosis/drug therapy , Bone Regeneration
2.
Sci Rep ; 10(1): 2084, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034269

ABSTRACT

We previously reported on the strong symbiosis of AMF species (Rhizophagus irregularis CD1) with the cotton (Gossypium hirsutum L.) which is grown worldwide. In current study, it was thus investigated in farmland to determine the biological control effect of AMF on phosphorus acquisition and related gene expression regulation, plant growth and development, and a series of agronomic traits associated with yield and fiber quality in cotton. When AMF and cotton were symbiotic, the expression of the specific phosphate transporter family genes and P concentration in the cotton biomass were significantly enhanced. The photosynthesis, growth, boll number per plant and the maturity of the fiber were increased through the symbiosis between cotton and AMF. Statistical analysis showed a highly significant increase in yield for inoculated plots compared with that from the non inoculated controls, with an increase percentage of 28.54%. These findings clearly demonstrate here the benefits of AMF-based inoculation on phosphorus acquisition, growth, seed cotton yield and fiber quality in cotton. Further improvement of these beneficial inoculants on crops will help increase farmers' income all over the world both now and in the future.


Subject(s)
Cotton Fiber/standards , Gossypium/growth & development , Mycorrhizae/physiology , Phosphorus/metabolism , Crop Production , Gossypium/metabolism , Gossypium/microbiology , Seedlings/growth & development , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL