Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612872

ABSTRACT

Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Morus , Humans , Diabetes Mellitus, Type 2/drug therapy , Kaempferols , Molecular Dynamics Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Fruit , Flavonoids
2.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237885

ABSTRACT

As the most important natural antioxidants in plant extracts, polyphenols demonstrate versatile bioactivities and are susceptible to oxidation. The commonly used ultrasonic extraction often causes oxidation reactions involving the formation of free radicals. To minimize the oxidation effects during the ultrasonic extraction process, we designed a hydrogen (H2)-protected ultrasonic extraction method and used it in Chrysanthemum morifolium extraction. Hydrogen-protected extraction improved the total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and polyphenol content of Chrysanthemum morifolium water extract (CME) compared with air and nitrogen (N2) conditions. We further investigated the protective effects and mechanisms of CME on palmitate (PA)-induced endothelial dysfunction in human aorta endothelial cells (HAECs). We found that hydrogen-protected CME (H2-CME) best-prevented impairment in nitric oxide (NO) production, endothelial NO synthase (eNOS) protein level, oxidative stress, and mitochondrial dysfunction. In addition, H2-CME prevented PA-induced endothelial dysfunction by restoring mitofusin-2 (MFN2) levels and maintaining redox balance.

3.
Chem Commun (Camb) ; 53(48): 6424-6427, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28555698

ABSTRACT

We report a pH-responsive photothermal ablation agent (pH-PTT) based on cyanine dyes for photothermal therapy (PTT). The nanoparticles formed by BSA and pH-PTT preferentially accumulated in the Golgi apparatus of cancer cells compared to normal cells, and thus can be specifically activated by the acidic Golgi apparatus in cancer cells for effective PTT both ex vivo and in vivo.


Subject(s)
Carbocyanines/chemistry , Coloring Agents/chemistry , Golgi Apparatus/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Photochemical Processes , Temperature , Carbocyanines/pharmacology , Cell Line , Cell Survival/drug effects , Coloring Agents/pharmacology , Golgi Apparatus/chemistry , Golgi Apparatus/drug effects , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Optical Imaging , Phototherapy
SELECTION OF CITATIONS
SEARCH DETAIL