Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
2.
Biosci Rep ; 40(5)2020 05 29.
Article in English | MEDLINE | ID: mdl-32426811

ABSTRACT

Elevation of endothelial microparticles (EMPs) play an important role in the progression of inflammation-related vascular diseases such as cardiovascular diseases (CVDs). Thai perilla (Perilla frutescens) nutlets are rich in phenolic compounds and flavonoids that exert potent antioxidant and anti-inflammatory effects. We found that the ethyl acetate (EA) and ethanol (Eth) extracts of Thai perilla nutlets contain phenolic compounds such as luteolin, apigenin, chryseoriol and their glycosides, which exhibit antioxidant activity. The goal of the present study was to investigate the effects of the extracts on endothelial activation and EMPs generation in tumour necrosis factor-α (TNF-α)-induced EA.hy926 cells. We found that TNF-α (10 ng/ml) activated EA.hy926 cells and subsequently generated EMPs. Pre-treatment with the extracts significantly attenuated endothelial activation by decreasing the expression of the intracellular adhesion molecule-1 (ICAM-1) in a dose-dependent manner. Only the Eth extract showed protective effects against overproduction of interleukin-6 (IL-6) in the activated cells. Furthermore, the extracts significantly reduced TNF-α-enhanced EMPs generation in a dose-dependent manner. In conclusion, Thai perilla nutlet extracts, especially the Eth extract, may have potential to protect endothelium against vascular inflammation through the inhibition of endothelial activation and the generation of endothelial microparticles (EMPs).


Subject(s)
Atherosclerosis/drug therapy , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Perilla frutescens/chemistry , Plant Extracts/pharmacology , Atherosclerosis/immunology , Atherosclerosis/pathology , Cell Line , Cell-Derived Microparticles/metabolism , Drug Evaluation, Preclinical , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Nuts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
3.
Transl Res ; 177: 19-30.e5, 2016 11.
Article in English | MEDLINE | ID: mdl-27344508

ABSTRACT

Nontransferrin-bound iron (NTBI) is a heterogeneously speciated plasma iron, typically detectable when transferrin saturation (TfSat) exceeds 75%. Here, we examine factors affecting NTBI levels by a recently discovered direct chelator-based (CP851) fluorescent bead-linked flow-cytometric assay (bead-NTBI), compared with the established indirect nitrilotriacetate (NTA) assay in 122 iron-overloaded patients, including 64 on recent iron chelation therapy and 13 healthy volunteers. Both methods correlated (r = 0.57, P < 0.0001) but with low agreement, attributable to 2 major factors: (1) the NTA method, unlike the bead method, is highly dependent on TfSat, with NTBI under-estimation at low TfSat and over-estimation once Tf is saturated, (2) the bead method detects <3-fold higher values than the NTA assay in patients on recent deferiprone-containing chelation due to greater detection of chelate complexes but lower values for patients on deferasirox. The optimal timing of sample collection relative to chelation dosing requires further study. Patients with splenectomy, high-storage iron, and increased erythropoiesis had greater discrepancy between assays, consistent with differential access by both methods to the NTBI pools associated with these clinical variables. The bead-NTBI assay has advantages over the NTA assay, being less dependent on TfSat, hence of less tendency for false-negative or false-positive values at low and high TfSat, respectively.


Subject(s)
Biological Assay/methods , Iron/metabolism , Microspheres , Transferrin/metabolism , Fluorescence , Humans , Iron Chelating Agents/pharmacology , Nitrilotriacetic Acid/metabolism , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL