Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
G3 (Bethesda) ; 12(6)2022 05 30.
Article in English | MEDLINE | ID: mdl-35416986

ABSTRACT

The Brassicaceae family comprises more than 3,700 species with a diversity of phenotypic characteristics, including seed oil content and composition. Recently, the global interest in Thlaspi arvense L. (pennycress) has grown as the seed oil composition makes it a suitable source for biodiesel and aviation fuel production. However, many wild traits of this species need to be domesticated to make pennycress ideal for cultivation. Molecular breeding and engineering efforts require the availability of an accurate genome sequence of the species. Here, we describe pennycress genome annotation improvements, using a combination of long- and short-read transcriptome data obtained from RNA derived from embryos of 22 accessions, in addition to public genome and gene expression information. Our analysis identified 27,213 protein-coding genes, as well as on average 6,188 biallelic SNPs. In addition, we used the identified SNPs to evaluate the population structure of our accessions. The data from this analysis support that the accession Ames 32872, originally from Armenia, is highly divergent from the other accessions, while the accessions originating from Canada and the United States cluster together. When we evaluated the likely signatures of natural selection from alternative SNPs, we found 7 candidate genes under likely recent positive selection. These genes are enriched with functions related to amino acid metabolism and lipid biosynthesis and highlight possible future targets for crop improvement efforts in pennycress.


Subject(s)
Thlaspi , Biofuels , Plant Oils/metabolism , Seeds/genetics , Thlaspi/genetics , Thlaspi/metabolism , Transcriptome
2.
Database (Oxford) ; 20202020 12 11.
Article in English | MEDLINE | ID: mdl-33306801

ABSTRACT

Camelina is an annual oilseed plant from the Brassicaceae family that is gaining momentum as a biofuel winter cover crop. However, a significant limitation in further enhancing its utility as a producer of oils that can be used as biofuels, jet fuels or bio-based products is the absence of a repository for all the gene expression and regulatory information that is being rapidly generated by the community. Here, we provide CamRegBase (https://camregbase.org/) as a one-stop resource to access Camelina information on gene expression and co-expression, transcription factors, lipid associated genes and genome-wide orthologs in the close-relative reference plant Arabidopsis. We envision this as a resource of curated information for users, as well as a repository of new gene regulation information.


Subject(s)
Arabidopsis , Brassicaceae , Biofuels , Brassicaceae/genetics , Plant Oils , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL