Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Type of study
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Toxicol Appl Pharmacol ; 335: 6-15, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28943391

ABSTRACT

Jacareubin is a xanthone isolated from the heartwood of Calophyllum brasiliense with antibacterial and gastroprotective properties and the intention for clinical use as an anti-cancer treatment (due to the similar chemical structure to other anti-neoplastic drugs) requires an investigation of whether this compound can generate adverse effects on non-transformed cells. Jacareubin (0.5-1000µM in DMSO) was more cytotoxic on phytohemagglutinin (PHA)-stimulated normal human peripheral blood mononuclear cells (PBMCs; IC50 at 72h by MTT: 85.9µM) than on G0 phase-PBMCs (IC50 315.6µM) using trypan blue exclusion and formazan metabolism assays. Jacareubin had lower toxicity on PBMCs than Taxol (1µM). Jacareubin presented cytostatic activity because it inhibited PHA-stimulated PBMCs proliferation (from 2.5µM; CFSE dilution and replication index). Jacareubin induced PBMCs arrest in G0/G1 phase of the cell cycle (from 5µM) as evaluated by DNA content. Moreover, Jacareubin generated genotoxicity by breaking DNA strands selectively in PHA-stimulated PBMCs (from 5µM) rather than on resting PBMCs using the single-cell gel electrophoresis assay and increasing the frequency of micronucleated (MN) PBMCs in vitro (from 5µM) and frequency of hypodiploid cells (from 10µM). When 100mg/kg Jacareubin was injected i.p. into mice (a fifth of the LD50; 0.548g/kg. Approximately to 300µM in vitro), we observe no increase in the MN level in bone marrow cells. Jacareubin can be consider for further anti-tumoural activity due to its preferential genotoxic, cytotoxic and cytostatic actions on proliferating cells rather than on resting cells and the lack of in vivo genotoxicity.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Calophyllum/chemistry , DNA Damage , Erythrocytes/drug effects , Leukocytes, Mononuclear/drug effects , Plant Extracts/pharmacology , Xanthones/pharmacology , Adult , Aneuploidy , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Erythrocytes/pathology , Humans , Inhibitory Concentration 50 , Leukocytes, Mononuclear/pathology , Male , Mice, Inbred BALB C , Micronuclei, Chromosome-Defective/chemically induced , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Risk Assessment , Time Factors , Xanthones/isolation & purification , Xanthones/toxicity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL