Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Methods Mol Biol ; 2469: 193-200, 2022.
Article in English | MEDLINE | ID: mdl-35508840

ABSTRACT

Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.


Subject(s)
Catharanthus , Plant Cells , Flow Cytometry , Gene Expression Regulation, Plant , Plant Cells/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteomics
2.
Eur J Nutr ; 58(1): 113-130, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29151137

ABSTRACT

PURPOSE: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS: BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS: Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS: BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.


Subject(s)
Blood-Brain Barrier/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Rubus/metabolism , Animals , Cells, Cultured , Chromatography, Liquid , Humans , In Vitro Techniques , Mass Spectrometry , Mice , Mice, Inbred BALB C , Models, Animal , Neuroprotective Agents/metabolism , Plant Extracts/metabolism , Polymerase Chain Reaction , Polyphenols/metabolism
3.
Cell ; 151(1): 194-205, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23000270

ABSTRACT

Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.


Subject(s)
Arabidopsis/genetics , DNA Methylation , Epigenesis, Genetic , Pollen/genetics , RNA, Plant/genetics , RNA, Small Interfering/genetics , Animals , Arabidopsis/growth & development , DNA Transposable Elements , Mammals/genetics , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , Seeds/genetics , Seeds/metabolism
4.
Plant Physiol ; 148(2): 1168-81, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18667720

ABSTRACT

In flowering plants, the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part in fertilization are crucial goals in the study of plant reproduction. Studies of gene expression in male gametes of maize (Zea mays) and Plumbago and in lily (Lilium longiflorum) generative cells already showed that the previously held view of transcriptionally inert male gametes was not true, but genome-wide studies were lacking. Analyses in the model plant Arabidopsis (Arabidopsis thaliana) were hindered, because no method to isolate sperm cells was available. Here, we used fluorescence-activated cell sorting to isolate sperm cells from Arabidopsis, allowing GeneChip analysis of their transcriptome at a genome-wide level. Comparative analysis of the sperm cell transcriptome with those of representative sporophytic tissues and of pollen showed that sperm has a distinct and diverse transcriptional profile. Functional classifications of genes with enriched expression in sperm cells showed that DNA repair, ubiquitin-mediated proteolysis, and cell cycle progression are overrepresented Gene Ontology categories. Moreover, analysis of the small RNA and DNA methylation pathways suggests that distinct mechanisms might be involved in regulating the epigenetic state of the paternal genome. We identified numerous candidate genes whose involvement in sperm cell development and fertilization can now be directly tested in Arabidopsis. These results provide a roadmap to decipher the role of sperm-expressed proteins.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Profiling , Pollen/genetics , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , DNA Methylation , DNA Repair/genetics , Expressed Sequence Tags , Flow Cytometry , Gene Library , Genes, Plant , Genome, Plant , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pollen/cytology , Pollen/metabolism , Principal Component Analysis , RNA, Messenger/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL