Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Rev Neurosci ; 24(7): 416-430, 2023 07.
Article in English | MEDLINE | ID: mdl-37237103

ABSTRACT

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Cognition , Thalamus/physiology , Neuroimaging , Neural Pathways/physiology
2.
Elife ; 102021 10 21.
Article in English | MEDLINE | ID: mdl-34672259

ABSTRACT

A hallmark of electrophysiological brain activity is its 1/f-like spectrum - power decreases with increasing frequency. The steepness of this 'roll-off' is approximated by the spectral exponent, which in invasively recorded neural populations reflects the balance of excitatory to inhibitory neural activity (E:I balance). Here, we first establish that the spectral exponent of non-invasive electroencephalography (EEG) recordings is highly sensitive to general (i.e., anaesthesia-driven) changes in E:I balance. Building on the EEG spectral exponent as a viable marker of E:I, we then demonstrate its sensitivity to the focus of selective attention in an EEG experiment during which participants detected targets in simultaneous audio-visual noise. In addition to these endogenous changes in E:I balance, EEG spectral exponents over auditory and visual sensory cortices also tracked auditory and visual stimulus spectral exponents, respectively. Individuals' degree of this selective stimulus-brain coupling in spectral exponents predicted behavioural performance. Our results highlight the rich information contained in 1/f-like neural activity, providing a window into diverse neural processes previously thought to be inaccessible in non-invasive human recordings.


Subject(s)
Attention/physiology , Brain/physiology , Electrophysiological Phenomena/physiology , Acoustic Stimulation , Anesthetics, Intravenous/pharmacology , Electroencephalography , Female , Humans , Ketamine/pharmacology , Male , Photic Stimulation , Propofol/pharmacology , Young Adult
3.
Nat Commun ; 12(1): 2430, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893294

ABSTRACT

Knowledge about the relevance of environmental features can guide stimulus processing. However, it remains unclear how processing is adjusted when feature relevance is uncertain. We hypothesized that (a) heightened uncertainty would shift cortical networks from a rhythmic, selective processing-oriented state toward an asynchronous ("excited") state that boosts sensitivity to all stimulus features, and that (b) the thalamus provides a subcortical nexus for such uncertainty-related shifts. Here, we had young adults attend to varying numbers of task-relevant features during EEG and fMRI acquisition to test these hypotheses. Behavioral modeling and electrophysiological signatures revealed that greater uncertainty lowered the rate of evidence accumulation for individual stimulus features, shifted the cortex from a rhythmic to an asynchronous/excited regime, and heightened neuromodulatory arousal. Crucially, this unified constellation of within-person effects was dominantly reflected in the uncertainty-driven upregulation of thalamic activity. We argue that neuromodulatory processes involving the thalamus play a central role in how the brain modulates neural excitability in the face of momentary uncertainty.


Subject(s)
Cerebral Cortex/physiology , Perception/physiology , Thalamus/physiology , Uncertainty , Adolescent , Adult , Algorithms , Cerebral Cortex/diagnostic imaging , Electroencephalography , Female , Humans , Magnetic Resonance Imaging/methods , Male , Models, Neurological , Nerve Net/diagnostic imaging , Nerve Net/physiology , Thalamus/diagnostic imaging , Young Adult
4.
Elife ; 92020 08 03.
Article in English | MEDLINE | ID: mdl-32744502

ABSTRACT

Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.


Subject(s)
Auditory Perception , Brain/physiology , Decision Making/physiology , Acoustic Stimulation , Adult , Electroencephalography , Female , Humans , Male , Young Adult
5.
J Neurosci ; 39(3): 537-547, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30478031

ABSTRACT

Dopamine (DA) modulates corticostriatal connections. Studies in which imaging of the DA system is integrated with functional imaging during cognitive performance have yielded mixed findings. Some work has shown a link between striatal DA (measured by PET) and fMRI activations, whereas others have failed to observe such a relationship. One possible reason for these discrepant findings is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. Moreover, a potential DA-BOLD association may be modulated by task performance. We studied 155 (104 normal-performing and 51 low-performing) healthy older adults (43% females) who underwent fMRI scanning while performing a working memory (WM) n-back task along with DA D2/3 PET assessment using [11C]raclopride. Using multivariate partial-least-squares analysis, we observed a significant pattern revealing positive associations of striatal as well as extrastriatal DA D2/3 receptors to BOLD response in the thalamo-striatal-cortical circuit, which supports WM functioning. Critically, the DA-BOLD association in normal-performing, but not low-performing, individuals was expressed in a load-dependent fashion, with stronger associations during 3-back than 1-/2-back conditions. Moreover, normal-performing adults expressing upregulated BOLD in response to increasing task demands showed a stronger DA-BOLD association during 3-back, whereas low-performing individuals expressed a stronger association during 2-back conditions. This pattern suggests a nonlinear DA-BOLD performance association, with the strongest link at the maximum capacity level. Together, our results suggest that DA may have a stronger impact on functional brain responses during more demanding cognitive tasks.SIGNIFICANCE STATEMENT Dopamine (DA) is a major neuromodulator in the CNS and plays a key role in several cognitive processes via modulating the blood oxygenation level-dependent (BOLD) signal. Some studies have shown a link between DA and BOLD, whereas others have failed to observe such a relationship. A possible reason for the discrepancy is differences in task demands, such that a more demanding task with greater prefrontal activations may yield a stronger association with DA. We examined the relationship of DA to BOLD response during working memory under three load conditions and found that the DA-BOLD association is expressed in a load-dependent fashion. These findings may help explain the disproportionate impairment evident in more effortful cognitive tasks in normal aging and in those suffering dopamine-dependent neurodegenerative diseases (e.g., Parkinson's disease).


Subject(s)
Memory, Short-Term/physiology , Receptors, Dopamine D2/physiology , Receptors, Dopamine D3/physiology , Aged , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/physiology , Dopamine Antagonists , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/physiology , Positron-Emission Tomography , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Raclopride , Radiopharmaceuticals , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/drug effects , Receptors, Dopamine D3/metabolism , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL