Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Chimia (Aarau) ; 76(11): 954-963, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-38069791

ABSTRACT

Metabolomics is playing an increasingly prominent role in chemical ecology and in the discovery of bioactive natural products (NPs). The identification of metabolites is a common/central objective in both research fields. NPs have significant biological properties and play roles in multiple chemical-ecological interactions. Classically, in pharmacognosy, their chemical structure is determined after a complex process of isolating and interpreting spectroscopic data. With the advent of powerful analytical techniques such as liquid chromatography-mass spectrometry (LC-MS) the annotation process of the specialised metabolome of plants and microorganisms has improved considerably. In this article, we summarise the possibilities opened by these advances and illustrate how we harnessed them in our own research to automate annotations of NPs and target the isolation of key compounds. In addition, we are also discussing the analytical and computational challenges associated with these emerging approaches and their perspective.

2.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-36649739

ABSTRACT

As privileged structures, natural products often display potent biological activities. However, the discovery of novel bioactive scaffolds is often hampered by the chemical complexity of the biological matrices they are found in. Large natural extract collections are thus extremely valuable for their chemical novelty potential but also complicated to exploit in the frame of drug-discovery projects. In the end, it is the pure chemical substances that are desired for structural determination purposes and bioactivity evaluation. Researchers interested in the exploration of large and chemodiverse extract collections should thus establish strategies aiming to efficiently tackle such chemical complexity and access these structures. Establishing carefully crafted digital layers documenting the spectral and chemical complexity as well as bioactivity results of natural extracts collections can help prioritize time-consuming but mandatory isolation efforts. In this note, we report the results of our initial exploration of a collection of 1,600 plant extracts in the frame of a drug-discovery effort. After describing the taxonomic coverage of this collection, we present the results of its liquid chromatography high-resolution mass spectrometric profiling and the exploitation of these profiles using computational solutions. The resulting annotated mass spectral dataset and associated chemical and taxonomic metadata are made available to the community, and data reuse cases are proposed. We are currently continuing our exploration of this plant extract collection for drug-discovery purposes (notably looking for novel antitrypanosomatids, anti-infective and prometabolic compounds) and ecometabolomics insights. We believe that such a dataset can be exploited and reused by researchers interested in computational natural products exploration.


Subject(s)
Drug Discovery , Plant Extracts , Plant Extracts/chemistry , Mass Spectrometry/methods , Drug Discovery/methods , Chromatography, Liquid/methods
3.
Front Pharmacol ; 11: 578346, 2020.
Article in English | MEDLINE | ID: mdl-33362543

ABSTRACT

In Traditional Chinese Medicine (TCM), herbal preparations often consist of a mixture of herbs. Their quality control is challenging because every single herb contains hundreds of components (secondary metabolites). A typical 10 herb TCM formula was selected to develop an innovative strategy for its comprehensive chemical characterization and to study the specific contribution of each herb to the formula in an exploratory manner. Metabolite profiling of the TCM formula and the extract of each single herb were acquired with liquid chromatography coupled to high-resolution mass spectrometry for qualitative analyses, and to evaporative light scattering detection (ELSD) for semi-quantitative evaluation. The acquired data were organized as a feature-based molecular network (FBMN) which provided a comprehensive view of all types of secondary metabolites and their occurrence in the formula and all single herbs. These features were annotated by combining MS/MS-based in silico spectral match, manual evaluation of the structural consistency in the FBMN clusters, and taxonomy information. ELSD detection was used as a filter to select the most abundant features. At least one marker per herb was highlighted based on its specificity and abundance. A single large-scale fractionation from the enriched formula enabled the isolation and formal identification of most of them. The obtained markers allowed an improved annotation of associated features by manually propagating this information through the FBMN. These data were incorporated in the high-resolution metabolite profiling of the formula, which highlighted specific series of related components to each individual herb markers. These series of components, named multi-component signatures, may serve to improve the traceability of each herb in the formula. Altogether, the strategy provided highly informative compositional data of the TCM formula and detailed visualizations of the contribution of each herb by FBMN, filtered feature maps, and reconstituted chromatogram traces of all components linked to each specific marker. This comprehensive MS-based analytical workflow allowed a generic and unbiased selection of specific and abundant markers and the identification of multiple related sub-markers. This exploratory approach could serve as a starting point to develop more simple and targeted quality control methods with adapted marker specificity selection criteria to given TCM formula.

5.
Int J Mol Sci ; 20(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091703

ABSTRACT

Zika virus (ZIKV) and Dengue virus (DENV) are mosquito-borne viruses of the Flavivirus genus that could cause congenital microcephaly and hemorrhage, respectively, in humans, and thus present a risk to global public health. A preventive vaccine against ZIKV remains unavailable, and no specific antiviral drugs against ZIKV and DENV are licensed. Medicinal plants may be a source of natural antiviral drugs which mostly target viral entry. In this study, we evaluate the antiviral activity of Doratoxylum apetalum, an indigenous medicinal plant from the Mascarene Islands, against ZIKV and DENV infection. Our data indicated that D. apetalum exhibited potent antiviral activity against a contemporary epidemic strain of ZIKV and clinical isolates of four DENV serotypes at non-cytotoxic concentrations in human cells. Time-of-drug-addition assays revealed that D. apetalum extract acts on ZIKV entry by preventing the internalisation of virus particles into the host cells. Our data suggest that D. apetalum-mediated ZIKV inhibition relates to virus particle inactivation. We suggest that D. apetalum could be a promising natural source for the development of potential antivirals against medically important flaviviruses.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Plant Extracts/pharmacology , Sapindaceae/chemistry , Zika Virus/drug effects , Animals , Cell Line, Tumor , Chlorocebus aethiops , Humans , Plants, Medicinal/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL