Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Redox Biol ; 51: 102274, 2022 05.
Article in English | MEDLINE | ID: mdl-35240537

ABSTRACT

Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor ß1 (TGF-ß1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-ß1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Animals , Benzene Derivatives , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
2.
Mol Nutr Food Res ; 59(2): 189-202, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25303559

ABSTRACT

SCOPE: Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis, and inflammation were explored to address its improvement of fructose-induced metabolic syndrome. METHODS AND RESULTS: Rats or astrocytes were exposed to fructose and then treated with betaine. Neural injury, proinflammatory markers, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, and histone deacetylases 3 (HDAC3) expressions were evaluated. The reduction of pro-opiomelanocortin and melanocortin 4 receptor positive neurons in fructose-fed rats was ameliorated by betaine. Moreover, fructose induced astrogliosis and proinflammatory cytokine production by increasing TLR4, MyD88 (where MyD88 is myeloid differentiation factor 88), and NF-κB expression in rat hypothalamus and astrocytes. HDAC3 overexpression preserved the prolonged inflammation in fructose-stimulated astrocytes by regulating nuclear NF-κB-dependent transcription. Betaine suppressed TLR4/NF-κB pathway activation and HDAC3 expression, contributing to its inhibition of hypothalamic astrogliosis and inflammation in animal and cell models. CONCLUSION: These findings suggest that betaine inhibits fructose-caused astrogliosis and inflammation by the suppression of TLR4/NF-κB pathway activation and HDAC3 expression to protect against hypothalamic neural injury, which, at least partly, contributes to the improvement of fructose-induced metabolic syndrome.


Subject(s)
Betaine/pharmacology , Fructose/adverse effects , Gliosis/drug therapy , Hypothalamic Diseases/drug therapy , Inflammation/drug therapy , Animals , Gene Expression Regulation , Gliosis/pathology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Hypothalamic Diseases/pathology , Hypothalamus/drug effects , Hypothalamus/metabolism , Inflammation/pathology , Male , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
3.
J Nutr Biochem ; 25(3): 353-62, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24456735

ABSTRACT

High fructose intake causes metabolic syndrome, being an increased risk of chronic kidney disease development in humans and animals. In this study, we examined the influence of betaine on high-fructose-induced renal damage involving renal inflammation, insulin resistance and lipid accumulation in rats and explored its possible mechanisms. Betaine was found to improve high-fructose-induced metabolic syndrome including hyperuricemia, dyslipidemia and insulin resistance in rats with systemic inflammation. Betaine also showed a protection against renal dysfunction and tubular injury with its restoration of the increased glucose transporter 9 and renal-specific transporter in renal brush bolder membrane and the decreased organic anion transporter 1 and adenosine-triphosphate-binding cassette transporter 2 in the renal cortex in this model. These protective effects were relevant to the anti-inflammatory action by inhibiting the production of inflammatory cytokines including interleukin (IL)-1ß, IL-18, IL-6 and tumor necrosis factor-α in renal tissue of high-fructose-fed rat, being more likely to suppress renal NOD-like receptor superfamily, pyrin domain containing 3 inflammasome activation than nuclear factor κB activation. Subsequently, betaine with anti-inflammation ameliorated insulin signaling impairment by reducing the up-regulation of suppressor of cytokine signaling 3 and lipid accumulation partly by regulating peroxisome proliferator-activated receptor α/palmityltransferase 1/carnitine/organic cation transporter 2 pathway in kidney of high-fructose-fed rats. These results indicate that the inflammatory inhibition plays a pivotal role in betaine's improvement of high-fructose-induced renal injury with insulin resistance and lipid accumulation in rats.


Subject(s)
Betaine/administration & dosage , Dietary Supplements , Fructose/toxicity , Kidney/drug effects , Animals , Cytokines/metabolism , Dyslipidemias/chemically induced , Hyperuricemia/chemically induced , Inflammation/chemically induced , Insulin Resistance , Kidney/metabolism , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL