Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 15: 1351882, 2024.
Article in English | MEDLINE | ID: mdl-38650629

ABSTRACT

This work aimed to explore the mechanisms underlying the interaction of the active furanocoumarins in P. corylifolia on tofacitinib both in vivo and in vitro. The concentration of tofacitinib and its metabolite M8 was determined using UPLC-MS/MS. The peak area ratio of M8 to tofacitinib was calculated to compare the inhibitory ability of furanocoumarin contained in the traditional Chinese medicine P. corylifolia in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP3A4 (rCYP3A4). We found that bergapten and isopsoralen exhibited more significant inhibitory activity in RLMs than other furanocoumarins. Bergapten and isopsoralen were selected to investigate tofacitinib drug interactions in vitro and in vivo. Thirty rats were randomly allocated into 5 groups (n = 6): control (0.5% CMC-Na), low-dose bergapten (20 mg/kg), high-dose bergapten (50 mg/kg), low-dose isopsoralen (20 mg/kg) and ketoconazole. 10 mg/kg of tofacitinib was orally intervented to each rat and the concentration level of tofacitinib in the rats were determined by UPLC-MS/MS. More imporrantly, the results showed that bergapten and isopsoralen significantly inhibited the metabolism of tofacitinib metabolism. The AUC(0-t), AUC(0-∞), MRT(0-t), MRT(0-∞) and Cmax of tofacitinib increased in varying degrees compared with the control group (all p < 0.05), but CLz/F decreased in varying degrees (p < 0.05) in the different dose bergapten group and isopsoralen group. Bergapten, isopsoralen and tofacitinib exhibit similar binding capacities with CYP3A4 by AutoDock 4.2 software, confirming that they compete for tofacitinib metabolism. P. corylifolia may considerably impact the metabolism of tofacitinib, which can provide essential information for the accurate therapeutic application of tofacitinib.

2.
Front Pharmacol ; 11: 01079, 2020.
Article in English | MEDLINE | ID: mdl-33041783

ABSTRACT

BACKGROUND: Diazepam is a benzodiazepine drug used to treat anxiety, insomnia, and muscle spasms. Imperatorin is a phytochemical isolated from medicinal plants and is widely used in herbal medicine. The aim of this study was to investigate the interactions between imperatorin and diazepam in vitro and in vivo and to provide evidence-based guidance for the safe clinical use of the drug. METHODS: In vitro inhibition of imperatorin was assessed by incubating rat liver microsomes with diazepam to determine IC50 values and the type of inhibition. For in vivo assessment, six rats were pretreated with 50 mg/kg imperatorin for two weeks, six were administered saline, and a single dose of 10 mg/kg diazepam was administered orally to both groups 30 min after the administration of imperatorin. RESULTS: Imperatorin inhibited the in vitro metabolism of diazepam via the competitive mechanism of CYP450. The IC50 values of imperatorin to nordazepam and temazepam were 1.54 µM and 1.80 µM, respectively. The inhibitory constant values for temazepam and nordazepam were 1.24 µM and 1.29 µM, respectively. Long-term administration of imperatorin significantly increased the AUC(0-12h), AUC(0-∞), and Cmax of diazepam, while Vz/F and CLz/F were decreased significantly (P < 0.05). In turn, the AUC(0-12h), AUC(0-∞), and Cmax of nordazepam and temazepam decreased significantly, and Vz/F and CLz/F increased significantly (P < 0.05). CONCLUSIONS: This study demonstrates that imperatorin inhibits the metabolism of diazepam both in vitro and in vivo. These results indicated that more attention should be paid when taking diazepam together with food or herbs containing IMP, although further investigation is still needed.

3.
Chem Biol Interact ; 329: 109147, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32738202

ABSTRACT

Acacetin is a natural flavonoid that is widely distributed in plants and possesses numerous pharmacological activities. The aim of the present study was to investigate the effects of acacetin on the activities of the cytochrome P450 family members CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1, and CYP3A2 in rat liver microsomes in vitro and rats in vivo to evaluate potential herb-drug interactions by using a cocktail approach. Phenacetin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and midazolam were chosen as the probe substrates. An ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the probe substrates and their metabolites. In vitro, the mode of acacetin inhibition of CYP2B1, CYP2C11, and CYP2E1 was competitive, while mixed inhibition was observed for CYP1A2 and CYP3A2. The Ki values in this study were less than 8.32 µM. In vivo, the mixed probe substrates were administered by gavage after daily intraperitoneal injection with 50 mg/kg acacetin or saline for 2 weeks. The main pharmacokinetic parameters, area under the plasma concentration-time curve (AUC), plasma clearance (CL), and maximum plasma concentration (Cmax) of the probe substrates were significantly different in the experimental group than in the control group. Overall, the in vitro and in vivo results indicated that acacetin would be at high risk to cause toxicity and drug interactions via cytochrome P450 inhibition.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Flavones/metabolism , Animals , Area Under Curve , Cytochrome P-450 Enzyme System/chemistry , Flavones/chemistry , Flavones/pharmacokinetics , Half-Life , Inhibitory Concentration 50 , Kinetics , Male , Microsomes, Liver/metabolism , ROC Curve , Rats , Rats, Sprague-Dawley
4.
Drug Des Devel Ther ; 14: 1909-1919, 2020.
Article in English | MEDLINE | ID: mdl-32546958

ABSTRACT

PURPOSE: The aim of the present study was to investigate the interactions of the main components of Lygodium root (ie, p-coumaric acid, acacetin, apigenin, buddleoside and Diosmetin-7-O-ß-D-glucopyranoside) with cytochrome P450 3A enzyme activity both in vitro and in vivo. METHODS: In vitro inhibition of drugs was assessed by incubating rat liver microsomes (RLMs) with a typical P450 3A enzyme substrate, midazolam, to determine their 50% inhibitory concentration (IC50) values. For the in vivo study, healthy male Sprague Dawley rats were consecutively administered acacetin or apigenin for 7 days at the dosage of 5 mg/kg after being randomly divided into 3 groups: Group A (control group), Group B (acacetin group) and Group C (apigenin group). RESULTS: Among the five main components of Lygodium root, only acacetin and apigenin showed inhibitory effects on the cytochrome P450 3A enzyme in vitro. The IC50 values of acacetin and apigenin were 58.46 µM and 8.20 µM, respectively. Additionally, the in vivo analysis results revealed that acacetin and apigenin could systemically inhibit midazolam metabolism in rats. The Tmax, AUC(0-t) and Cmax of midazolam in group B and group C were significantly increased (P<0.05), accompanied by a significant decrease in Vz/F and CLz/F (P<0.05). CONCLUSION: Acacetin and apigenin could inhibit the activity of the cytochrome P450 3A enzyme in vitro and in vivo, indicating that herbal drug interactions might occur when taking Lygodium root and midazolam synchronously.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Ferns/chemistry , Plant Roots/chemistry , Animals , Apigenin/chemistry , Apigenin/isolation & purification , Apigenin/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Coumaric Acids/pharmacology , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Flavones/chemistry , Flavones/isolation & purification , Flavones/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Glycosides , Male , Medicine, Traditional , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
Int J Clin Exp Med ; 8(12): 22310-8, 2015.
Article in English | MEDLINE | ID: mdl-26885208

ABSTRACT

Flos Daturae, known as "baimantuoluo" or "yangjinhua" in China, has been used for centuries in Traditional Chinese Medicine for the treatment of asthma, convulsions, pain, and rheumatism. To investigate the influences of Flos Daturae on the activities of rat CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2B6, CYP2D6 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (10 mg/kg), tolbutamide (1 mg/kg), omeprazole (10 mg/kg), bupropion (10 mg/kg), metoprolol (10 mg/kg) and testosterone (10 mg/kg), was intragastric administered to rats treated with a single low or high dose of Flos Daturae decotion for 7days. Blood samples collected at a series of time-points in plasma were determined by UPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 3.0. The results from the present in vivo study showed that Flos Daturae induce the activity of CYP2D6 enzyme with the decreased Cmax, AUC(0-∞) (P < 0.05) and the increased CL (P < 0.05). However, there were no significant differences of other probe drugs in plasma concentration and pharmacokinetic parameters. There were no significant effects on rat CYP1A2, CYP3A4, CYP2B6, CYP2C9 and CYP2C19 by Flos Daturae. Therefore, the resulting data suggested that caution was needed when Flos Daturae was co-administered with CYP2D6 substrates, which may result in treatment failure and herb-drug interactions.

SELECTION OF CITATIONS
SEARCH DETAIL