Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17545, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845251

ABSTRACT

Disposal of significant tonnages of rice straw is expensive, but using it to mobilise phosphorus (P) from inorganically fixed pools in the soil may add value. This study was carried out to determine whether the use of rice straw mixed with phosphorus-solubilizing microbes could solubilize a sizable portion fixed soil P and affect P transformation, silicon (Si) concentration, organic acid concentrations, and enzyme activity to increase plant growth. Depending on the soil temperature, the application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes could solubilize 3.4-3.6% of inorganic P, and minimised the hysteresis impact by 6-8%. At plant maturity, application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes and 75% of recommended P application raised the activity of dehydrogenase, alkaline phosphatase activity, cellulase, and peroxidase by 77, 65, 87, and 82% in soil, respectively. It also boosted Si concentration in the soil by 58%. Wheat grain yield was 40% and 18% higher under rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% of recommended P application than under no and 100% P application, respectively. Rice grain yield also increased significantly with the same treatment. Additionally, it increased root volume, length, and P uptake by 2.38, 1.74 and 1.62-times above control for wheat and 1.98, 1.67, and 2.06-times above control for rice, respectively. According to path analysis, P solubilisation by Si and organic acids considerably increased (18-32%) P availability in the rhizosphere. Therefore, cultivators could be advised to use rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% P of mineral P fertiliser to save 25% P fertiliser without reducing wheat and rice yield.


Subject(s)
Oryza , Soil , Soil/chemistry , Phosphorus , Triticum , Fertilizers/analysis , Edible Grain/chemistry , Organic Chemicals/analysis , Agriculture
2.
Fitoterapia ; 169: 105601, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406886

ABSTRACT

Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.


Subject(s)
Breast Neoplasms , MicroRNAs , Nigella sativa , Humans , Female , Breast Neoplasms/drug therapy , Nigella sativa/chemistry , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
Environ Res ; 216(Pt 2): 114583, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36265602

ABSTRACT

The unintended impact of natural summer fire on soil is complicated and rather less studied than its above-ground impact. Recognising the impact of a fire on silvopastoral soils and their resilience can aid in improving the management of silvopastoral systems. We studied the immediate (after 1 week (W)) and short-term (after 3 months (M)) recovery of different soil biological and chemical properties after the natural fire, with specific emphasis on phosphorus (P) dynamics. Soil samples were collected from four different layers (0-15, 15-30, 30-45, and 45-60 cm) of Morus alba, Leucaena leucocephala, and Ficus infectoria based silvopastoral systems. In the 0-15 cm soil layer, soil organic carbon (SOC) declined by ∼37, 42, and 30% after the fire in Morus-, Leucaena-, and Ficus-based systems, respectively within 1W of fire. However, after 3M of fire, Morus and Leucaena regained ∼6 and 11.5% SOC as compared to their status after 1W in the 0-15 cm soil layer. After 1W of the fire, soil nitrogen (N), sulfur (S), and potassium availability declined significantly at 0-15 cm soil layer in all systems. Iron and manganese availability improved significantly after 1W of the fire. Saloid bound P and aluminium bound P declined significantly immediately after the fire, increasing availability in all systems. However, calcium bound P did not change significantly after the fire. Dehydrogenase and alkaline phosphatase activity declined significantly after the fire, however, phenol oxidase and peroxidase activity were unaltered. Resiliencies of these soil properties were significantly impacted by soil depth and time. Path analysis indicated microbial activity and cationic micronutrients majorly governed the resilience of soil P fractions and P availability. Pasture yield was not significantly improved after the fire, so natural summer fire must be prevented to avoid loss of SOC, N, and S.


Subject(s)
Fires , Soil , Soil/chemistry , Phosphorus , Carbon/analysis , Nitrogen/analysis , Cations
4.
J Environ Manage ; 318: 115559, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35753129

ABSTRACT

It is imperative to find suitable strategies to utilize the native soil phosphorus (P), as natural rock phosphate deposits are at a verge of depletion. We explored two such cost-effective and eco-friendly strategies for native soil P solubilization: silicon (Si)-rich agro-wastes (as Si source) and phosphate solubilizing microorganism (PSM). An incubation study was conducted in a sub-tropical Alfisol for 90 days at 25 °C under field capacity moisture. A factorial completely randomized design with 3 factors, namely: Si sources (three levels: sugarcane bagasse ash, rice husk ash, and corn cob ash), PSM (two levels: without PSM, and with PSM); and Si doses [three levels: no Si (Si0), 125 (Si125) and 250 (Si250) mg Si kg-1 soil] was followed. The PSM increased solution P and soluble Si level by ∼22.2 and 1.88%, respectively, over no PSM; whereas, Si125 and Si250 increased solution P by ∼60.4 and 77.1%, as well as soluble Si by ∼41.5 and 55.5%, respectively, over Si0. Also, interaction of PSM × Si doses was found significant (P<0.05). Activities of soil enzymes (dehydrogenase, acid phosphatase) and microbial biomass P also increased significantly both with PSM and Si application. Overall, PSM solubilized ∼4.18 mg kg-1 of inorganic P and mineralized ∼5.92 mg kg-1 of organic P; whereas, Si125 and Si250 solubilized ∼3.85 and 5.72 mg kg-1 of inorganic P, and mineralized ∼4.15 and 5.37 mg kg-1 of organic P, respectively. Path analysis revealed that inorganic P majorly contributed to total P solubilization; whereas, soluble and loosely bound, iron bound and aluminium bound P significantly influenced the inorganic P solubilization. Thus, utilization of such wastes as Si sources will not only complement the costly P fertilizers, but also address the waste disposal issue in a sustainable manner.


Subject(s)
Saccharum , Soil , Cellulose , Phosphates/metabolism , Phosphorus/metabolism , Saccharum/metabolism , Silicon , Soil Microbiology
5.
Am J Physiol Gastrointest Liver Physiol ; 304(11): G958-69, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23558010

ABSTRACT

Alterations in fat metabolism, in particular elevated plasma concentrations of free fatty acids and triglycerides (TG), have been implicated in the pathogenesis of Type 2 diabetes, obesity, and cardiovascular disease. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a member of the large family of membrane-bound O-acyltransferases, catalyzes the final step in triacylglycerol formation. In the intestine, DGAT1 is one of the acyltransferases responsible for the reesterficiation of dietary TG. Following a single dose of a selective pharmacological inhibitor of DGAT1, PF-04620110, a dose-dependent inhibition of TG and vitamin A absorption postprandially was demonstrated in rodents and human subjects. In C57/BL6J mice, acute DGAT1 inhibition alters the temporal and spatial pattern of dietary lipid absorption. To understand the impact of DGAT1 inhibition on enterocyte lipid metabolism, lipomic profiling was performed in rat intestine and plasma as well as human plasma. DGAT1 inhibition causes an enrichment of polyunsaturated fatty acids within the TG class of lipids. This pharmacological intervention gives us insight as to the role of DGAT1 in human dietary lipid absorption.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Intestinal Absorption/drug effects , Oxazepines/pharmacology , Adolescent , Adult , Animals , Case-Control Studies , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Dietary Fats/blood , Dietary Fats/metabolism , Dose-Response Relationship, Drug , Enterocytes/metabolism , Enzyme Inhibitors/pharmacokinetics , Fatty Acids, Unsaturated/blood , Fatty Acids, Unsaturated/metabolism , Female , Humans , Intestinal Mucosa/metabolism , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Oxazepines/pharmacokinetics , Postprandial Period , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Triglycerides/metabolism , Vitamin A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL