Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 190, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486151

ABSTRACT

BACKGROUND: Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory agents in medicinal plants. In vitro culture of plants can improve the medicinal plants' metabolite profile and phenolic compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants were measured. RESULTS: CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the plants treated with CL had the highest RA content (7.68 mg. g- 1 dry weight) compared to the control (3.42 mg. g- 1 dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL. CONCLUSIONS: The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated with CL was reported for the first time in this investigation.


Subject(s)
Cyanobacteria , Plants, Medicinal , Mentha piperita/chemistry , Mentha piperita/metabolism , Mentha piperita/microbiology , Rosmarinic Acid , Meristem , Biomass , Phenols/metabolism , Indoleacetic Acids/metabolism , Plants, Medicinal/chemistry
2.
Planta Med ; 90(3): 172-203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37956978

ABSTRACT

In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Hepatitis C, Chronic/drug therapy , Drug Discovery
3.
Neurol Sci ; 44(12): 4291-4306, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37581769

ABSTRACT

Epilepsy is considered common neurological diseases that threaten the lives of millions of people all around the world. Since ancient times, different forms of medications have been used to treat this condition. Adverse events associated with treatments and the residence time of available drugs caused to search for safer and more efficient therapies and drugs remain one of the major areas of research interest for scientists. As one of the therapeutics with fewer side effects, plants and their essential oils can be considered replacements for existing treatments. Medicinal plants have proven to be an effective natural source of antiepileptic drugs; most of them have their mechanism of action by affecting GABA receptors in different paths. Cannabis indica and Cymbopogon winterianus are well-known plant species with antiepileptic activities. The current review presenting a list of plants with antiepileptic effects aims to pave the way for finding alternative drugs with fewer side effects for scientists.


Subject(s)
Epilepsy , Plants, Medicinal , Humans , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Phytotherapy
SELECTION OF CITATIONS
SEARCH DETAIL