Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Nutr ; 147(7): 1426-1436, 2017 07.
Article in English | MEDLINE | ID: mdl-28592513

ABSTRACT

Background: Few data are available on the effectiveness of large-scale food fortification programs.Objective: We assessed the impact of mandatory wheat flour fortification on micronutrient status in Yaoundé and Douala, Cameroon.Methods: We conducted representative surveys 2 y before and 1 y after the introduction of fortified wheat flour. In each survey, 10 households were selected within each of the same 30 clusters (n = ∼300 households). Indicators of inflammation, malaria, anemia, and micronutrient status [plasma ferritin, soluble transferrin receptor (sTfR), zinc, folate, and vitamin B-12] were assessed among women aged 15-49 y and children 12-59 mo of age.Results: Wheat flour was consumed in the past 7 d by ≥90% of participants. Postfortification, mean total iron and zinc concentrations of flour samples were 46.2 and 73.6 mg/kg (target added amounts were 60 and 95 mg/kg, respectively). Maternal anemia prevalence was significantly lower postfortification (46.7% compared with 39.1%; adjusted P = 0.01), but mean hemoglobin concentrations and child anemia prevalence did not differ. For both women and children postfortification, mean plasma concentrations were greater for ferritin and lower for sTfR after adjustments for potential confounders. Mean plasma zinc concentrations were greater postfortification and the prevalence of low plasma zinc concentration in women after fortification (21%) was lower than before fortification (39%, P < 0.001); likewise in children, the prevalence postfortification (28%) was lower than prefortification (47%, P < 0.001). Mean plasma total folate concentrations were ∼250% greater postfortification among women (47 compared with 15 nmol/L) and children (56 compared with 20 nmol/L), and the prevalence of low plasma folate values was <1% after fortification in both population subgroups. In a nonrepresentative subset of plasma samples, folic acid was detected in 77% of women (73% of those fasting) and 93% of children. Mean plasma and breast-milk vitamin B-12 concentrations were >50% greater postfortification.Conclusion: Although the pre-post survey design limits causal inference, iron, zinc, folate, and vitamin B-12 status increased among women and children in urban Cameroon after mandatory wheat flour fortification.


Subject(s)
Flour/analysis , Folic Acid/blood , Food, Fortified , Iron/blood , Vitamin B 12/blood , Zinc/blood , Adolescent , Adult , Cameroon , Diet , Female , Humans , Infant , Male , Middle Aged , Nutritional Status , Surveys and Questionnaires , Young Adult
2.
Nutrients ; 9(5)2017 May 20.
Article in English | MEDLINE | ID: mdl-28531099

ABSTRACT

Vitamin A (VA) fortification of cooking oil is considered a cost-effective strategy for increasing VA status, but few large-scale programs have been evaluated. We conducted representative surveys in Yaoundé and Douala, Cameroon, 2 years before and 1 year after the introduction of a mandatory national program to fortify cooking oil with VA. In each survey, 10 different households were selected within each of the same 30 clusters (n = ~300). Malaria infection and plasma indicators of inflammation and VA (retinol-binding protein, pRBP) status were assessed among women aged 15-49 years and children aged 12-59 months, and casual breast milk samples were collected for VA and fat measurements. Refined oil intake was measured by a food frequency questionnaire, and VA was measured in household oil samples post-fortification. Pre-fortification, low inflammation-adjusted pRBP was common among children (33% <0.83 µmol/L), but not women (2% <0.78 µmol/L). Refined cooking oil was consumed by >80% of participants in the past week. Post-fortification, only 44% of oil samples were fortified, but fortified samples contained VA concentrations close to the target values. Controlling for age, inflammation, and other covariates, there was no difference in the mean pRBP, mean breast milk VA, prevalence of low pRBP, or prevalence of low milk VA between the pre- and post-fortification surveys. The frequency of refined oil intake was not associated with VA status indicators post-fortification. In sum, after a year of cooking oil fortification with VA, we did not detect evidence of increased plasma RBP or milk VA among urban women and preschool children, possibly because less than half of the refined oil was fortified. The enforcement of norms should be strengthened, and the program should be evaluated in other regions where the prevalence of VA deficiency was greater pre-fortification.


Subject(s)
Oils/chemistry , Vitamin A Deficiency/prevention & control , Vitamin A/administration & dosage , Adolescent , Adult , Cameroon/epidemiology , Child, Preschool , Cooking , Food, Fortified , Humans , Male , Middle Aged , Oils/administration & dosage , Vitamin A Deficiency/epidemiology , Young Adult
3.
Article in English | MEDLINE | ID: mdl-24684161

ABSTRACT

Dietary exposure to trace elements (aluminium, antimony, barium, cadmium, lead, nickel, vanadium, copper, manganese, molybdenum, germanium, lithium, strontium and tellurium) was assessed by the total diet study (TDS) method. Sixty-four pooled samples representing 96.5% of the diet in Yaoundé, Cameroon, were prepared "as consumed" before analysis. Consumption data were sourced from a households' budget survey. Dietary exposures were compared with health-based guidance or nutritional values and to worldwide TDS results. The health-based guidance value was exceeded by ≤ 0.2% of the study population for aluminium, antimony, barium, cadmium, nickel and vanadium. For lead, the observed 95th percentile of exposure (3.05 µg kg(-1) body weight day(-1)) equals the critical value considered by JECFA for cardiovascular effects; therefore, risk to health cannot be excluded for certain consumer groups. The population at risk of excess intake for manganese, copper, molybdenum and nickel was considered to be low (≤ 0.3%). The prevalence of inadequate intake was estimated at 5.9% for copper and was nil for molybdenum. Due to the lack of toxicological and/or nutritional consistent data to perform a risk assessment, dietary exposures to germanium, lithium, strontium and tellurium were provided as supplementary data. The food groups highest contributors to exposure were "tubers and starches" for aluminium (27%), lead (39%) and copper (26%), "cereals and cereal products" for cadmium (54%) and manganese (35%), "fruits, vegetables and oilseeds" for barium (34%), molybdenum (49%) and nickel (31%), "beverages" for antimony (27%) and "fish" for vanadium (43% - lower bound). Measures should be recommended to maintain low levels of exposure before the problem could become an important health or trade issue.


Subject(s)
Food Contamination/analysis , Trace Elements/analysis , Trace Elements/toxicity , Adult , Aluminum/analysis , Aluminum/toxicity , Animals , Antimony/analysis , Antimony/toxicity , Barium/analysis , Barium/toxicity , Cadmium/analysis , Cadmium/toxicity , Cameroon , Copper/analysis , Diet Surveys , Eating , Humans , Lead/analysis , Lead/toxicity , Male , Manganese/analysis , Molybdenum/analysis , Nickel/analysis , Nickel/toxicity , Risk Assessment , Vanadium/analysis , Vanadium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL