Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
F1000Res ; 8: 960, 2019.
Article in English | MEDLINE | ID: mdl-31372216

ABSTRACT

Background: Although both genetic and environmental factors have been reported to influence the risk of isolated cleft lip with or without cleft palate (CL/P), the exact mechanisms behind CL/P are still largely unaccounted for. We recently developed new methods to identify parent-of-origin (PoO) interactions with environmental exposures (PoOxE) and applied them to families with children born with isolated cleft palate only. Here, we used the same genome-wide association study (GWAS) dataset and methodology to screen for PoOxE effects in the larger sample of CL/P triads. Methods: Genotypes from 1594 complete triads and 314 dyads (1908 nuclear families in total) with CL/P were available for the current analyses. Of these families, 1024 were Asian, 825 were European and 59 had other ancestries. After quality control, 341,191 SNPs remained from the original 569,244. The exposures were maternal cigarette smoking, use of alcohol, and use of vitamin supplements in the periconceptional period. The methodology applied in the analyses is implemented in the R-package Haplin. Results: Among Europeans, there was evidence of a PoOxSmoke effect for ANK3 with three SNPs (rs3793861, q=0.20, p=2.6e-6; rs7087489, q=0.20, p=3.1e-6; rs4310561, q=0.67, p=4.0e-5) and a PoOxAlcohol effect for ARHGEF10 with two SNPs (rs2294035, q=0.32, p=2.9e-6; rs4876274, q=0.76, p=1.3e-5). Conclusion: Our results indicate that the detected PoOxE effects have a plausible biological basis, and thus warrant replication in other independent cleft samples. Our demonstration of the feasibility of identifying complex interactions between relevant environmental exposures and PoO effects offers new avenues for future research aimed at unravelling  the complex etiology of cleft lip defects.


Subject(s)
Alcohol Drinking , Ankyrins , Cleft Lip , Cleft Palate , Rho Guanine Nucleotide Exchange Factors , Smoking , Ankyrins/genetics , Child , Cleft Lip/genetics , Cleft Palate/genetics , Female , Genome-Wide Association Study , Humans , Pregnancy , Prenatal Exposure Delayed Effects
2.
Ann Hum Genet ; 76(3): 221-36, 2012 May.
Article in English | MEDLINE | ID: mdl-22497478

ABSTRACT

Orofacial clefts are common birth defects with strong evidence for both genetic and environmental causal factors. Candidate gene studies combined with exposures known to influence the outcome provide a highly targeted approach to detecting GxE interactions. We developed a new statistical approach that combines the case-control and offspring-parent triad designs into a "hybrid design" to search for GxE interactions among 334 autosomal cleft candidate genes and maternal first-trimester exposure to smoking, alcohol, coffee, folic acid supplements, dietary folate and vitamin A. The study population comprised 425 case-parent triads of isolated clefts and 562 control-parent triads derived from a nationwide study of orofacial clefts in Norway (1996-2001). A full maximum-likelihood model was used in combination with a Wald test statistic to screen for statistically significant GxE interaction between strata of exposed and unexposed mothers. In addition, we performed pathway-based analyses on 28 detoxification genes and 21 genes involved in folic acid metabolism. With the possible exception of the T-box 4 gene (TBX4) and dietary folate interaction in isolated CPO, there was little evidence overall of GxE interaction in our data. This study is the largest to date aimed at detecting interactions between orofacial clefts candidate genes and well-established risk exposures.


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Gene-Environment Interaction , Alcohol Drinking/genetics , Case-Control Studies , Coffee , Dietary Supplements , Female , Folic Acid/metabolism , Humans , Maternal Exposure , Pregnancy , Research Design , Smoking/genetics , Vitamin A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL