Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 13: 820381, 2022.
Article in English | MEDLINE | ID: mdl-35444555

ABSTRACT

Cancer is an increasingly common disease and is considered one of the main causes of death in the world. Lophocereus schottii (L. schottii) is a cactus used in Mexico in traditional medicine for cancer treatment. This study aimed to determine the effect of the ethanolic extract and the polar and nonpolar fractions of L. schottii in murine L5178Y lymphoma cells in vitro, analyzing their effect on the proliferative activity of splenocytes, and establishing the effective concentration 50 (EC50) of the polar fraction. In addition, the secondary metabolites present in the extracts were determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The study establishes that the three extracts of L. schottii have a cytotoxic effect on L5178Y cells and on the splenocytes stimulated with ConA. Additionally, the polar fraction has a significantly greater effect being three times more effective than cyclophosphamide on inhibiting the viability of L5178Y cells. Secondary metabolites present are mainly flavonoids and alkaloids, but there are also some terpenoids and sterols. Ultimately, polar fraction can be considered an anticancer substance, since its EC50 of 15 µg/mL is within the parameters established by the National Cancer Institute.

2.
Nutrients ; 12(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120804

ABSTRACT

Obesity generates a chronic low-grade inflammatory state which promotes oxidativestress and triggers comorbidities. Alliin is the main organosulfur compound in garlic and has beenshown to induce a decrease in the expression of proinflammatory cytokines; its systemic effect onmetabolic parameters and adipose tissue is not yet known, however. After nine weeks of HFD andwith obesity established in C57BL/6 mice, we observed that a daily treatment with alliin for 3.5weeks (15 mg/kg) did not affect body weight, but significantly improved insulin sensitivity andglucose tolerance, both evaluated through a blood glucose monitoring system. Once alliin treatmentwas completed, serum, adipose tissue, and organs of interest related to metabolism were removedfor further analysis. We observed that alliin significantly decreased the size of adipocytes fromepididymal adipose tissue, evaluated via microscopy. A decrease in gene expression and serumprotein levels of the adipocytokines leptin and resistin, as well as decreased serum IL-6concentration, were detected by qRT-PCR and ELISA, respectively. It did not, however, affectmRNA expression of antioxidant enzymes in the liver. Taken altogether, these results indicate thattreatment with alliin reduces metaflammation markers in DIO mice and improves some metabolicparameters without affecting others.


Subject(s)
Adipokines/blood , Blood Glucose/metabolism , Cysteine/analogs & derivatives , Dietary Supplements , Garlic/chemistry , Obesity , Animals , Biomarkers/blood , Cysteine/chemistry , Cysteine/pharmacology , Gene Expression Regulation/drug effects , Inflammation/blood , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Obesity/blood , Obesity/chemically induced , Obesity/drug therapy
3.
Oxid Med Cell Longev ; 2013: 297357, 2013.
Article in English | MEDLINE | ID: mdl-23691263

ABSTRACT

Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.


Subject(s)
Brain Ischemia/drug therapy , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Nitric Oxide Donors/therapeutic use , Reperfusion Injury/drug therapy , Stroke/drug therapy , Animals , Brain Ischemia/complications , Humans , Inflammation/complications , Neuroprotective Agents/pharmacology , Nitric Oxide Donors/pharmacology , Reperfusion Injury/complications , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL