Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836618

ABSTRACT

Salak seed extract (Salacca zalacca) is known for its high antioxidant content and low caffeine levels, making it a promising candidate for the development of value-added health products. However, there is a lack of scientific evidence for its anti-hyperglycemic effects. To address this, we investigated the in vitro and in vivo anti-hyperglycemic and antioxidant effects of salak seed extract. The HPLC chromatogram of salak seed extract shows a prominent peak that corresponds to chlorogenic acid. In vitro studies revealed that salak seeds inhibited α-glucosidase activity and glucose uptake in Caco-2 cells in a concentration-dependent manner, while also exhibiting antioxidant properties. The extract exhibits a non-competitive inhibition on α-glucosidase activity, with an IC50 and Ki of 16.28 ± 7.22 and 24.81 µg/mL, respectively. In vivo studies utilizing streptozotocin-nicotinamide-induced diabetic mice showed that the extract significantly reduced fasting blood glucose (FBG) levels in the oral glucose tolerance test. Continuous administration of the salak seed extract resulted in lower FBG levels by 13.8% as compared with untreated diabetic mice, although this change was not statistically significant. The estimated LD50 value of salak seed extract exceeds 2000 mg/kg, and no toxicity symptoms have been detected. Our research supports that salak seed extract has the potential to serve as a functional food or supplement that may be beneficial in reducing postprandial hyperglycemia among people with type 2 diabetes. This effect was explained by the salak's inhibitory mechanisms of glucose absorption due to inhibition of both α-glucosidase activity and intestinal glucose uptake, coupled with its antioxidant effects.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Humans , Animals , Glucose Tolerance Test , Diabetes Mellitus, Type 2/drug therapy , alpha-Glucosidases , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Caco-2 Cells , Glucose , Seeds , Hypoglycemic Agents/pharmacology , Blood Glucose
2.
Pharm Biol ; 61(1): 189-200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36625086

ABSTRACT

CONTEXT: Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) (Fabaceae) has traditionally been used to treat diabetes mellitus. OBJECTIVE: This study demonstrates the antidiabetic and antioxidant effects of aqueous extract of LS leaves in vivo and in vitro. MATERIALS AND METHODS: The effects of aqueous LS leaf extract on glucose uptake, sodium-dependent glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) mRNA expression in Caco-2 cells, α-glucosidase, and lipid peroxidation were evaluated in vitro. The antidiabetic effects were evaluated using an oral glucose tolerance test (OGTT) and a 28-day consecutive administration to streptozotocin (STZ)-nicotinamide (NA)-induced type 2 diabetic mice. RESULTS: The extract significantly inhibited glucose uptake (IC50: 236.2 ± 36.05 µg/mL) and downregulated SGLT1 and GLUT2 mRNA expression by approximately 90% in Caco-2 cells. Furthermore, it non-competitively inhibited α-glucosidase in a concentration-dependent manner with the IC50 and Ki of 6.52 ± 0.42 and 1.32 µg/mL, respectively. The extract at 1000 mg/kg significantly reduced fasting blood glucose levels in both the OGTT and 28-day consecutive administration models as compared with untreated STZ-NA-induced diabetic mice (p < 0.05). Significant improvements of serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and GLUT4 levels were observed. Furthermore, the extract markedly decreased oxidative stress markers by 37-53% reduction of superoxide dismutase 1 (SOD1) in muscle and malondialdehyde (MDA) in muscle and pancreas, which correlated with the reduction of MDA production in vitro (IC50: 24.80 ± 7.24 µg/mL). CONCLUSION: The LS extract has potent antihyperglycemic activity to be used as alternative medicine to treat diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , alpha-Glucosidases , Humans , Mice , Animals , alpha-Glucosidases/metabolism , Blood Glucose , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Niacinamide , RNA, Messenger , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL