Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Bone Res ; 12(1): 1, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212599

ABSTRACT

The effects of gender-affirming hormone therapy on the skeletal integrity and fracture risk in transitioning adolescent trans girls are unknown. To address this knowledge gap, we developed a mouse model to simulate male-to-female transition in human adolescents in whom puberty is first arrested by using gonadotrophin-releasing hormone analogs with subsequent estradiol treatment. Puberty was suppressed by orchidectomy in male mice at 5 weeks of age. At 3 weeks post-surgery, male-to-female mice were treated with a high dose of estradiol (~0.85 mg) by intraperitoneal silastic implantation for 12 weeks. Controls included intact and orchidectomized males at 3 weeks post-surgery, vehicle-treated intact males, intact females and orchidectomized males at 12 weeks post-treatment. Compared to male controls, orchidectomized males exhibited decreased peak bone mass accrual and a decreased maximal force the bone could withstand prior to fracture. Estradiol treatment in orchidectomized male-to-female mice compared to mice in all control groups was associated with an increased cortical thickness in the mid-diaphysis, while the periosteal circumference increased to a level that was intermediate between intact male and female controls, resulting in increased maximal force and stiffness. In trabecular bone, estradiol treatment increased newly formed trabeculae arising from the growth plate as well as mineralizing surface/bone surface and bone formation rate, consistent with the anabolic action of estradiol on osteoblast proliferation. These data support the concept that skeletal integrity can be preserved and that long-term fractures may be prevented in trans girls treated with GnRHa and a sufficiently high dose of GAHT. Further study is needed to identify an optimal dose of estradiol that protects the bone without adverse side effects.


Subject(s)
Cancellous Bone , Estradiol , Adolescent , Male , Humans , Female , Mice , Animals , Estradiol/pharmacology , Bone and Bones , Gender Identity , Disease Models, Animal
2.
Int J Mol Sci ; 20(3)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30699963

ABSTRACT

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 are the principal aggrecanases in mice and humans; however, mice lacking the catalytic domain of both enzymes (TS-4/5∆cat) have no skeletal phenotype, suggesting there is an alternative aggrecanase for modulating normal growth and development in these mice. We previously identified aggrecanase activity that (a) cleaved at E↓G rather than E↓A bonds in the aggrecan core protein, and (b) was upregulated by retinoic acid but not IL-1α. The present study aimed to identify the alternative aggrecanase. Femoral head cartilage explants from TS-4/5∆cat mice were stimulated with IL-1α or retinoic acid and total RNA was analysed by microarray. In addition to ADAMTS-5 and matrix metalloproteinase (MMP)-13, which are not candidates for the novel aggrecanase, the microarray analyses identified MMP-11, calpain-5 and ADAMTS-9 as candidate aggrecanases upregulated by retinoic acid. When calpain-5 and MMP-11 failed to meet subsequent criteria, ADAMTS-9 emerged as the most likely candidate for the novel aggrecanase. Immunohistochemistry revealed ADAMTS-9 expression throughout the mouse growth plate and strong expression, particularly in the proliferative zone of the TS-4/5-∆cat mice. In conclusion, ADAMTS-9 has a novel specificity for aggrecan, cleaving primarily at E↓G rather than E↓A bonds in mouse cartilage. ADAMTS-9 might have more important roles in normal skeletal development compared with ADAMTS-4 and ADAMTS-5, which have key roles in joint pathology.


Subject(s)
ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism , ADAMTS9 Protein/metabolism , Cartilage/metabolism , Endopeptidases/metabolism , ADAMTS9 Protein/genetics , Aggrecans/metabolism , Animals , Arthritis/genetics , Arthritis/metabolism , Cells, Cultured , Immunohistochemistry , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , RNA, Messenger/metabolism
3.
Nature ; 434(7033): 648-52, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-15800625

ABSTRACT

Aggrecan is the major proteoglycan in cartilage, endowing this tissue with the unique capacity to bear load and resist compression. In arthritic cartilage, aggrecan is degraded by one or more 'aggrecanases' from the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteinases. ADAMTS1, 8 and 9 have weak aggrecan-degrading activity. However, they are not thought to be the primary aggrecanases because ADAMTS1 null mice are not protected from experimental arthritis, and cleavage by ADAMTS8 and 9 is highly inefficient. Although ADAMTS4 and 5 are expressed in joint tissues, and are known to be efficient aggrecanases in vitro, the exact contribution of these two enzymes to cartilage pathology is unknown. Here we show that ADAMTS5 is the major aggrecanase in mouse cartilage, both in vitro and in a mouse model of inflammatory arthritis. Our data suggest that ADAMTS5 may be a suitable target for the development of new drugs designed to inhibit cartilage destruction in arthritis, although further work will be required to determine whether ADAMTS5 is also the major aggrecanase in human arthritis.


Subject(s)
Cartilage/enzymology , Endopeptidases/metabolism , Metalloendopeptidases/metabolism , ADAM Proteins , ADAMTS4 Protein , ADAMTS5 Protein , Aggrecans , Animals , Antigens/immunology , Arthritis/enzymology , Arthritis/genetics , Arthritis/immunology , Arthritis/metabolism , Cartilage/drug effects , Cartilage/metabolism , Disease Models, Animal , Endopeptidases/deficiency , Endopeptidases/genetics , Extracellular Matrix Proteins/metabolism , Genotype , Interleukin-1/pharmacology , Lectins, C-Type , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Procollagen N-Endopeptidase/genetics , Procollagen N-Endopeptidase/metabolism , Proteoglycans/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL