Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mar Drugs ; 22(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667785

ABSTRACT

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Subject(s)
Diabetes Mellitus , Dietary Supplements , Hypoglycemic Agents , Seaweed , Seaweed/chemistry , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus/drug therapy , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Aquatic Organisms
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255871

ABSTRACT

Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.


Subject(s)
Medicine , Drug Development , Vitamins , Pharmaceutical Vehicles , Oceans and Seas
3.
J Exp Biol ; 226(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37326253

ABSTRACT

Seabirds have evolved several life-history characteristics to help buffer environmental stochasticity. However, particularly during the breeding season, seabirds may be affected by reductions in prey availability and localised oceanographic conditions caused by variations in the environment. The increase in sea surface temperature, triggered by accelerated global warming, is impairing phytoplankton production of omega-3 fatty acids (FAs). Here, we assessed the ecological role of omega-3 FAs on chick development and subsequently on breeder foraging behaviour in two closely related shearwater species foraging in contrasting marine environments. We supplemented chicks with omega-3 FA pills or with control placebo pills and monitored chick growth, chick health status and breeder at-sea foraging behaviour using global positioning system devices. We found that omega-3 chick supplementation reduced the 95% kernel utilization distribution of short trips of Cape Verde shearwaters, but overall, breeders kept a similar foraging pattern between treatments, potentially influenced by predictable prey patches off the West African coast. In contrast, for Cory's shearwaters, the parents of the omega-3 group greatly reduced the foraging effort. This suggests that the proximity to productive prey patches around the colony may help birds to adjust their effort and, therefore, energy expenditure, to changes in the development of their offspring, as driven by their nutritional status. Overall, our results suggest a link between a chick diet enriched in omega-3 FAs and parental foraging effort, providing insight into their ability to cope with a changing and increasingly stochastic marine environment.


Subject(s)
Chickens , Diet , Animals , Diet/veterinary , Dietary Supplements , Feeding Behavior , Nutritional Status
4.
Mar Drugs ; 21(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36976212

ABSTRACT

Antibiotics are used to prevent and treat bacterial infections. After a prolonged use of antibiotics, it may happen that bacteria adapt to their presence, developing antibiotic resistance and bringing up health complications. Nowadays, antibiotic resistance is one of the biggest threats to global health and food security; therefore, scientists have been searching for new classes of antibiotic compounds which naturally express antimicrobial activity. In recent decades, research has been focused on the extraction of plant compounds to treat microbial infections. Plants are potential sources of biological compounds that express several biological functions beneficial for our organism, including antimicrobial activity. The high variety of compounds of natural origin makes it possible to have a great bioavailability of antibacterial molecules to prevent different infections. The antimicrobial activity of marine plants, also called seaweeds or macroalgae, for both Gram-positive and Gram-negative, and several other strains infective for humans, has been proven. The present review presents research focused on the extraction of antimicrobial compounds from red and green macroalgae (domain Eukarya, kingdom Plantae). Nevertheless, further research is needed to verify the action of macroalgae compounds against bacteria in vitro and in vivo, to be involved in the production of safe and novel antibiotics.


Subject(s)
Anti-Infective Agents , Chlorophyta , Rhodophyta , Seaweed , Humans , Plants, Edible , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Plant Extracts/pharmacology
5.
Foods ; 11(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36076839

ABSTRACT

The use of seaweed for therapeutic purposes is ancient, but only in the last decade, with advanced technologies, has it been possible to extract seaweed's bioactive compounds and test their potential properties. Algal metabolites possess nutritional properties, but they also exhibit antioxidant, antimicrobial, and antiviral activities, which allow them to be involved in several pharmaceutical applications. Seaweeds have been incorporated since ancient times into diets as a whole food. With the isolation of particular seaweed compounds, it would be possible to develop new types of food with therapeutically properties. Polysaccharides make up the majority of seaweed biomass, which has triggered an increase in interest in using seaweed for commercial purposes, particularly in the production of agar, carrageenan, and alginate. The bio-properties of polysaccharides are strictly dependent to their chemical characteristics and structure, which varies depending on the species, their life cycles, and other biotic and abiotic factors. Through this review, techniques for seaweed polysaccharides extraction are reported, with studies addressing the advantages for human health from the incorporation of algal compounds as dietary supplements and food additives.

6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806268

ABSTRACT

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson's disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs' design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at -80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.


Subject(s)
Catechol O-Methyltransferase , Ionic Liquids , Anions , Catechol O-Methyltransferase/chemistry , Choline/chemistry , Enzyme Stability , Humans , Ionic Liquids/chemistry
7.
Sci Total Environ ; 836: 155613, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35523349

ABSTRACT

Physiological changes were explored in fatty acids (FA) and carbohydrate (CHO) composition in the shredder Calamoceras marsupus larvae (Trichoptera) and leaf litter (C. marsupus food) exposed to copper and uranium under natural and experimental conditions. We measured FA and CHO content in leaf litter and larvae specimens from reference and impacted streams, and exposed for 5 weeks to four realistic environmental concentrations of copper (35 µg L-1 and 70 µg L-1) and uranium (25 µg L-1 and 50 µg L-1). Regarding FA, (1) leaf litter had a reduced polyunsaturated FA (PUFA) content in metal treatments, s (14 to 33% of total FA), compared to natural conditions (≥39% of total FA). Leaf litter exposed to uranium also differed in saturated FA (SFA) composition, with lower values in natural conditions and higher values under low uranium concentrations. (2) C. marsupus had/showed low PUFA content under Cu and U exposure, particularly in high uranium concentrations. Detritivores also decreased in PUFA under exposure to both metals, particularly in high uranium concentrations. On the other hand, (1) microorganisms of the biofilm colonizing leaf litter differed in CHO composition between natural (impacted and reference) and experimental conditions, with glucose and galactose being consistently the most abundant sugars, found in different amounts under copper or uranium exposure; (2) CHO of detritivores showed similar high galactose and fucose concentrations in contaminated streams and high copper treatments, whereas low copper treatment showed distinct CHO profiles, with higher mannose, glucose, arabinose, and fucose concentrations. Our study provides evidence of metal exposure effects on FA and CHO contents at different trophic levels, which might alter the quality of food flow in trophic webs.


Subject(s)
Alnus , Uranium , Animals , Copper/toxicity , Fatty Acids , Fucose , Galactose , Glucose , Insecta , Larva , Plant Leaves , Uranium/toxicity
8.
Mar Drugs ; 19(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203804

ABSTRACT

Currently, seaweeds are gaining major attention due to the benefits they give to our health. Recent studies demonstrate the high nutritional value of seaweeds and the powerful properties that seaweeds' bioactive compounds provide. Species of class Phaeophyceae, phylum Rhodophyta and Chlorophyta possess unique compounds with several properties that are potential allies of our health, which make them valuable compounds to be involved in biotechnological applications. In this review, the health benefits given by consumption of seaweeds as whole food or by assumption of bioactive compounds trough natural drugs are highlighted. The use of seaweeds in agriculture is also highlighted, as they assure soils and crops free from chemicals; thus, it is advantageous for our health. The addition of seaweed extracts in food, nutraceutical, pharmaceutical and industrial companies will enhance the production and consumption/usage of seaweed-based products. Therefore, there is the need to implement the research on seaweeds, with the aim to identify more bioactive compounds, which may assure benefits to human and animal health.


Subject(s)
Biological Products , Chlorophyta/chemistry , Phaeophyceae/chemistry , Rhodophyta/chemistry , Seaweed/chemistry , Agriculture , Animal Feed , Animals , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Biological Products/therapeutic use , Cosmetics/chemistry , Cosmetics/isolation & purification , Cosmetics/pharmacology , Dietary Supplements , Drug Development , Drug Discovery , Health Promotion , Healthy Lifestyle , Humans , Nutritive Value
9.
Article in English | MEDLINE | ID: mdl-34067088

ABSTRACT

The overexploitation of terrestrial habitats, combined with the ever-growing demand for food, has led to the search for alternative food sources. The importance of seaweeds as food sources has been growing, and their potential as sources of fatty acids (FA) make seaweeds an interesting feedstock for the food and nutraceutical industries. The aim of this study is to assess the potential of five red seaweeds (Asparagospis armata, Calliblepharis jubata, Chondracanthus teedei var. lusitanicus, Gracilaria gracilis, and Grateloupia turuturu) and three brown seaweeds (Colpomenia peregrina, Sargassum muticum and Undaria pinnatifida), harvested in central Portugal, as effective sources of essential FA for food or as dietary supplements. FA were extracted from the biomass, transmethylated to methyl esters, and analyzed through gas chromatography-mass spectrometry. G. gracilis presented the highest content of saturated fatty acids (SFA) (41.49 mg·g-1), whereas C. jubata exhibited the highest content of highly unsaturated fatty acids (HUFA) (28.56 mg·g-1); the three G. turuturu life cycle stages presented prominent SFA and HUFA contents. Omega-6/omega-3 ratios were assessed and, in combination with PUFA+HUFA/SFA ratios, it is suggested that C. jubata and U. pinnatifida may be the algae with highest nutraceutical potential, promoting health benefits and contributing to a balanced dietary intake of fatty acids.


Subject(s)
Rhodophyta , Seaweed , Fatty Acids , Fatty Acids, Essential , Fatty Acids, Unsaturated , Humans , Portugal
10.
Mar Drugs ; 19(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926129

ABSTRACT

Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.


Subject(s)
Dietary Supplements , Ecosystem , Phenols/metabolism , Phenols/pharmacology , Seaweed/metabolism , Animals , Humans , Nutritive Value , Phenols/isolation & purification , Secondary Metabolism
11.
Molecules ; 19(8): 12461-85, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25153865

ABSTRACT

The selection of natural and chemical compounds for potential applications in new pharmaceutical formulations constitutes a time-consuming procedure in drug screening. To overcome this issue, new devices called biosensors, have already demonstrated their versatility and capacity for routine clinical diagnosis. Designed to perform analytical analysis for the detection of a particular analyte, biosensors based on the coupling of proteins to amperometric and optical devices have shown the appropriate selectivity, sensibility and accuracy. During the last years, the exponential demand for pharmacokinetic studies in the early phases of drug development, along with the need of lower molecular weight detection, have led to new biosensor structure materials with innovative immobilization strategies. The result has been the development of smaller, more reproducible biosensors with lower detection limits, and with a drastic reduction in the required sample volumes. Therefore in order to describe the main achievements in biosensor fields, the present review has the main aim of summarizing the essential strategies used to generate these specific devices, that can provide, under physiological conditions, a credible molecule profile and assess specific pharmacokinetic parameters.


Subject(s)
Biosensing Techniques , Drug Evaluation, Preclinical/methods , Immobilized Proteins/chemistry , Animals , Humans , Limit of Detection , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL