Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387144

ABSTRACT

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Subject(s)
Glutathione S-Transferase pi , Uranium , Adult , Humans , Glutathione S-Transferase pi/genetics , Radiation, Ionizing , Gamma Rays/adverse effects , Apoptosis
2.
J Proteome Res ; 20(1): 995-1004, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33151695

ABSTRACT

Protection against low-dose ionizing radiation is of great significance. Uranium tailings are formed as a byproduct of uranium mining and a potential risk to organisms. In this study, we identified potential biomarkers associated with exposure to low-dose radiation from uranium tailings. We established a Wistar rat model of low dose rate irradiation by intratracheal instillation of a uranium tailing suspension. We observed pathological changes in the liver, lung, and kidney tissues of the rats. Using isobaric tags for relative and absolute quantification, we screened 17 common differentially expressed proteins in three dose groups. We chose alpha-1 antiproteinase (Serpina1), keratin 17 (Krt17), and aldehyde dehydrogenase (Aldh3a1) for further investigation. Our data showed that expression of Serpina1, Krt17, and Aldh3a1 had changed after the intratracheal instillation in rats, which may be potential biomarkers for uranium tailing low-dose irradiation. However, the underlying mechanisms require further investigation.


Subject(s)
Uranium , Animals , Biomarkers , Mining , Proteomics , Rats , Rats, Wistar , Uranium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL