Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 325: 117887, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38346525

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY: To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS: In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS: In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS: GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.


Subject(s)
Cartilage, Articular , Ginkgolides , Lactones , Osteoarthritis , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Chondrocytes , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Anti-Inflammatory Agents/adverse effects , Iodoacetic Acid/adverse effects , Iodoacetic Acid/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
2.
J Zhejiang Univ Sci B ; 24(7): 632-649, 2023 Jul 15.
Article in English, Chinese | MEDLINE | ID: mdl-37455139

ABSTRACT

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.


Subject(s)
Atrial Fibrillation , Animals , Rabbits , Atrial Fibrillation/drug therapy , Atrial Fibrillation/prevention & control , Atrial Fibrillation/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Molecular Docking Simulation , Oxidative Stress , Energy Metabolism , Mitochondria/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Heme Oxygenase-1
SELECTION OF CITATIONS
SEARCH DETAIL