Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34181873

ABSTRACT

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Brain Diseases, Metabolic/drug therapy , Carnitine/therapeutic use , Glutaryl-CoA Dehydrogenase/deficiency , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Brain Diseases, Metabolic/genetics , Carnitine/analogs & derivatives , Carnitine/metabolism , Cathepsin D/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/genetics , Grooming/drug effects , Inflammation/genetics , Interleukin-1beta/metabolism , Locomotion/drug effects , Lysine/pharmacology , Mice, Knockout , Open Field Test/drug effects , Transforming Growth Factor beta/metabolism
2.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Article in English | MEDLINE | ID: mdl-33620579

ABSTRACT

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Subject(s)
Amino Acids, Branched-Chain/blood , Cerebral Cortex/drug effects , Maple Syrup Urine Disease/metabolism , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Phenylbutyrates/administration & dosage , Animals , Catalase/metabolism , Cerebral Cortex/metabolism , Glutathione Peroxidase/metabolism , Maple Syrup Urine Disease/blood , Maple Syrup Urine Disease/chemically induced , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
3.
J Inherit Metab Dis ; 44(3): 740-750, 2021 05.
Article in English | MEDLINE | ID: mdl-33145772

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by mutations in the IDUA gene, that codifies the alpha-L-iduronidase enzyme, which deficiency leads to storage of glycosaminoglycans, with multiple clinical manifestations. One of the leading causes of death in MPS I patients are cardiac complications such as cardiac valve thickening, conduction abnormalities, myocardial dysfunction, and cardiac hypertrophy. The mechanism leading to cardiac dysfunction in MPS I is not entirely understood. In a previous study, we have demonstrated that losartan and propranolol improved the cardiac function in MPS I mice. Thus, we aimed to investigate whether the pathways influenced by these drugs may modulate the cardiac remodeling process in MPS I mice. According to our previous observation, losartan and propranolol restore the heart function, without altering valve thickness. MPS I mice presented reduced activation of AKT and ERK1/2, increased activity of cathepsins, but no alteration in metalloproteinase activity was observed. Animals treated with losartan showed a reduction in cathepsin activity and restored ERK1/2 activation. While both losartan and propranolol improved heart function, no mechanistic evidence was found for propranolol so far. Our results suggest that losartan or propranolol could be used to ameliorate the cardiac disease in MPS I and could be considered as adjuvant treatment candidates for therapy optimization.


Subject(s)
Heart Diseases/pathology , Losartan/pharmacology , MAP Kinase Signaling System/drug effects , Mucopolysaccharidosis I/drug therapy , Ventricular Remodeling/drug effects , Animals , Disease Models, Animal , Echocardiography , Female , Heart Diseases/drug therapy , Heart Diseases/genetics , Iduronidase/genetics , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL