Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627546

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a significant public health issue owing to its high incidence and consequences, and its global prevalence is presently 30% and rising, necessitating immediate action. Given the current controversies related to NAFLD, the search for novel therapeutic interventions continues. Astaxanthin is a carotenoid that primarily originates from marine organisms. It is the best antioxidant among carotenoids and one of the most significant components in treating NAFLD. The use of astaxanthin, a xanthophyll carotenoid, as a dietary supplement to treat chronic metabolic diseases is becoming more evident. According to growing data, astaxanthin may be able to prevent or even reverse NAFLD by reducing oxidative stress, inflammation, insulin resistance, lipid metabolism, and fibrosis. Astaxanthin might become a viable therapeutic or treatment option for NAFLD in the upcoming years. Elucidating the impact and mechanism of astaxanthin on NAFLD would not only establish a scientific basis for its clinical application, but also potentially enhance the precision of experimental methodology for future investigations targeting NAFLD treatment. This review explores the potential preventive and therapeutic effects of astaxanthin on liver disorders, especially NAFLD.

2.
Front Pharmacol ; 13: 1006198, 2022.
Article in English | MEDLINE | ID: mdl-36299879

ABSTRACT

The skin is the largest organ of the body that protects from mechanical, thermal, and physical injury. However, the function and appearance of skin visibly degenerates with age due to its frequent exposure to harmful effects of the environment, including ultraviolet irradiation and hazardous substances, in addition to the progression of oxidative stress in aging. These factors result in phenotypic changes in the skin, including wrinkling, pigmentation, reduced elasticity, and hydration during aging. Many natural antioxidant compounds have been studied extensively to reverse the signs of aging skin. Tocotrienols are a subfamily of vitamin E with potent antioxidant activity. Therefore, supplementation with vitamin E in the form of tocotrienol may efficiently protect skin from aging. In this review, the effects of tocotrienol on skin health, including pigmentation, moisture, and wrinkles during aging and UV exposure, were systematically evaluated based on a literature search of the PubMed and Scopus databases. The present data showed that tocotrienols protect the skin from inflammation, UV radiation and melanin accumulation. As the therapeutic value of tocotrienols grows, the potential of these vitamin E analogs to the skin requires further investigation.

3.
BMC Complement Altern Med ; 19(1): 209, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409340

ABSTRACT

BACKGROUND: The imbalance between the generation of free radicals and natural cellular antioxidant defenses, known as oxidative stress, can cause oxidation of biomolecules and further contribute to aging-associated diseases. The purpose of this study was to evaluate the antioxidant capacities of Thai traditional tonifying preparation, Jatu-Phala-Tiga (JPT) and its herbal ingredients consisting of Phyllanthus emblica, Terminalia arjuna, Terminalia chebula, and Terminalia bellirica and further assess its effect on longevity. METHOD: Antioxidant activities of various extracts obtained from JPT and its herbal components were carried out using well-established methods including metal chelating, free radical scavenging, and ferric reducing antioxidant power assays. Qualitative analysis of the chemical composition from JPT water extract was done by high-performance liquid chromatography tandem with electrospray ionisation mass spectrometry. The effect of JPT water extract on the lifespan of Caenorhabditis elegans were additionally described. RESULTS: Among the extracts, JPT water extract exerted remarkable antioxidant activities as compared to the extracts from other solvents and individual constituting plant extract. JPT water extract was found to possess the highest metal chelating activity, with an IC50 value of 1.75 ± 0.05 mg/mL. Moreover, it exhibited remarkable scavenging activities towards DPPH, ABTS, and superoxide anion radicals, with IC50 values of 0.31 ± 0.02, 0.308 ± 0.004, and 0.055 ± 0.002 mg/mL, respectively. The ORAC and FRAP values of JPT water extract were 40.338 ± 2.273 µM of Trolox/µg of extract and 23.07 ± 1.84 mM FeSO4/mg sample, respectively. Several well-known antioxidant-related compounds including amaronols, quinic acid, gallic acid, fertaric acid, kurigalin, amlaic acid, isoterchebin, chebulagic acid, ginkgolide C, chebulinic acid, ellagic acid, and rutin were found in this extract. Treatment with JPT water extract at 1 and 5 mg/mL increased C. elegans lifespan under normal growth condition (7.26 ± 0.65 vs. 10.4 0± 0.75 (p < 0.01) and 10.00 ± 0.73 (p < 0.01) days, respectively). CONCLUSIONS: The results indicated that JPT and its herbal ingredients exhibited strong antioxidant activities, in particular the water extract of the polyherbal tonic. These findings rationalize further investigation in JPT infusion as a promising agent for anti-aging and oxidative stress prevention.


Subject(s)
Antioxidants/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Plant Extracts/pharmacology , Animals , Antioxidants/analysis , Benzopyrans/analysis , Benzopyrans/pharmacology , Glucosides/analysis , Glucosides/pharmacology , Longevity/drug effects , Medicine, East Asian Traditional , Oxidative Stress/drug effects , Phenols/analysis , Phenols/pharmacology , Phyllanthus emblica/chemistry , Plant Extracts/analysis , Terminalia/chemistry , Thailand
4.
Clinics (Sao Paulo) ; 74: e688, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30864639

ABSTRACT

OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults. METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis. RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways. CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.


Subject(s)
Antioxidants/pharmacology , Dietary Supplements , Gene Expression/drug effects , Tocotrienols/pharmacology , alpha-Tocopherol/pharmacology , Cell Adhesion/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Immune System/drug effects , Male , Middle Aged , Oxidative Stress/drug effects , Protein Kinases/drug effects , Sex Factors , Signal Transduction/drug effects , Single-Blind Method , Time Factors
5.
Clinics ; 74: e688, 2019. tab, graf
Article in English | LILACS | ID: biblio-989635

ABSTRACT

OBJECTIVES This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults. METHODS A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis. RESULTS The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways. CONCLUSION Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.


Subject(s)
Humans , Male , Female , Middle Aged , Gene Expression/drug effects , Dietary Supplements , alpha-Tocopherol/pharmacology , Tocotrienols/pharmacology , Antioxidants/pharmacology , Protein Kinases/drug effects , Time Factors , Signal Transduction/drug effects , Cell Adhesion/drug effects , Single-Blind Method , Sex Factors , Gene Expression Regulation/drug effects , Oxidative Stress/drug effects , Immune System/drug effects
6.
Antioxidants (Basel) ; 7(6)2018 May 28.
Article in English | MEDLINE | ID: mdl-29843393

ABSTRACT

BACKGROUND: Tocotrienol and tocopherol are known to prevent numerous degenerative diseases. The aim of this study is to compare the effects of tocotrienol-rich fraction (TRF) with α-tocopherol (α-TF) on the antioxidant status of healthy individuals aged between 50 and 55 years. METHODS: Volunteers were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24). Fasting venous blood samples were taken at baseline (0 month), 3 months and 6 months of supplementation for the determination of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities as well as for reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations. RESULTS: CAT and GPx were unaffected by TRF and α-TF supplementations. SOD activity increased significantly after six months of TRF supplementation. Analysis by gender showed that only female subjects had significant increases in SOD and GPx activities after six months of TRF supplementation. GPx activity was also significantly higher in females compared to males after six months of TRF supplementation. The GSH/GSSG ratio increased significantly after six months of TRF and α-TF supplementation in only the female subjects. CONCLUSION: TRF and α-TF supplementation exhibited similar effects to the antioxidant levels of older adults with TRF having more significant effects in females.

7.
Clin Nutr ESPEN ; 21: 1-12, 2017 10.
Article in English | MEDLINE | ID: mdl-30014863

ABSTRACT

Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.


Subject(s)
Chromans/administration & dosage , Oxidative Stress , Palm Oil/administration & dosage , Tocotrienols/administration & dosage , Vitamin E/analogs & derivatives , alpha-Tocopherol/administration & dosage , Chromans/blood , Comet Assay , DNA Damage , Dietary Supplements , Female , Humans , Male , Malondialdehyde/blood , Middle Aged , Palm Oil/chemistry , Protein Carbonylation , Reactive Oxygen Species/metabolism , Tocotrienols/blood , Vitamin D/blood , Vitamin E/administration & dosage , Vitamin E/blood , alpha-Tocopherol/blood
SELECTION OF CITATIONS
SEARCH DETAIL